Principles of mathematical epidemiology and compartmental modelling application to COVID-19
- PMID: 34971801
- PMCID: PMC8713430
- DOI: 10.1016/j.accpm.2021.101017
Principles of mathematical epidemiology and compartmental modelling application to COVID-19
Keywords: Basic reproduction number; Epidemiology; Hospital dynamics; Infectious diseases modelling; Ordinary differential equations.
Figures



Similar articles
-
Analysis of a COVID-19 compartmental model: a mathematical and computational approach.Math Biosci Eng. 2021 Sep 14;18(6):7979-7998. doi: 10.3934/mbe.2021396. Math Biosci Eng. 2021. PMID: 34814285
-
Assessing the impact of adherence to Non-pharmaceutical interventions and indirect transmission on the dynamics of COVID-19: a mathematical modelling study.Math Biosci Eng. 2021 Oct 15;18(6):8905-8932. doi: 10.3934/mbe.2021439. Math Biosci Eng. 2021. PMID: 34814328
-
Use of the Hayami diffusive wave equation to model the relationship infected-recoveries-deaths of Covid-19 pandemic.Epidemiol Infect. 2021 Apr 29;149:e138. doi: 10.1017/S0950268821001011. Epidemiol Infect. 2021. PMID: 33910670 Free PMC article.
-
Optimal control strategies for the transmission risk of COVID-19.J Biol Dyn. 2020 Dec;14(1):590-607. doi: 10.1080/17513758.2020.1788182. J Biol Dyn. 2020. PMID: 32696723
-
Effects of SARS-CoV-2 infection on human reproduction.J Mol Cell Biol. 2021 Dec 30;13(10):695-704. doi: 10.1093/jmcb/mjab025. J Mol Cell Biol. 2021. PMID: 34003284 Free PMC article. Review.
Cited by
-
Operational stability study of lactate biosensors: modeling, parameter identification, and stability analysis.Front Bioeng Biotechnol. 2024 Jul 16;12:1385459. doi: 10.3389/fbioe.2024.1385459. eCollection 2024. Front Bioeng Biotechnol. 2024. PMID: 39091973 Free PMC article.
-
Epidemic models: why and how to use them.Anaesth Crit Care Pain Med. 2022 Apr;41(2):101048. doi: 10.1016/j.accpm.2022.101048. Epub 2022 Feb 28. Anaesth Crit Care Pain Med. 2022. PMID: 35240338 Free PMC article. No abstract available.
-
Real-time forecasting of COVID-19-related hospital strain in France using a non-Markovian mechanistic model.PLoS Comput Biol. 2024 May 17;20(5):e1012124. doi: 10.1371/journal.pcbi.1012124. eCollection 2024 May. PLoS Comput Biol. 2024. PMID: 38758962 Free PMC article.
References
-
- Keeling M.J., Rohani P. Princeton University Press; 2008. Modeling infectious diseases in humans and animals. - DOI
-
- Kermack W.O., McKendrick A.G. A contribution to the mathematical theory of epidemics. Proc R Soc Lond Ser Contai Pap Math Phys Character. 1927;115(772):700–721. doi: 10.1098/rspa.1927.0118. - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical