Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar 15:200:113876.
doi: 10.1016/j.bios.2021.113876. Epub 2021 Dec 18.

Rapid antimicrobial susceptibility profiling using impedance spectroscopy

Affiliations

Rapid antimicrobial susceptibility profiling using impedance spectroscopy

Pragya Swami et al. Biosens Bioelectron. .

Abstract

The present antibiotic susceptibility testing (AST) techniques based on bacterial culture, gene amplification and mass spectrometry are highly time consuming, labour intensive or expensive. Impedance spectroscopy is an emerging tool for rapid bacterial analysis as it is label-free, real-time, affordable and high-throughput. The over-reliance of this technique on complex chip designs and cell enrichment strategies has, however, slowed its foray into clinical AST. We demonstrate a label-free approach in which a low conductivity zwitterionic buffer is used for boosting impedance sensitivity in simple interdigitated electrodes (IDEs) allowing rapid AST in just 20 min without any liquid flow, biofunctionalization or cell enrichment steps. The detection principle relies on measuring changes in solution resistance due to antibiotic-induced bacterial cell death or growth. While the death-based approach is faster (20 min), it's restricted to surface-acting bactericidal antibiotics. The cell growth approach is longer (60-80 min) but more versatile as it applies to all drug types. Results for antibiotic sensitivity analysis and minimum inhibitory concentration (MIC) determination are illustrated for Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus against a wide class of antibiotics (penicillins, cephalosporins, polymyxins, carbapenems etc.).

Keywords: Antibiotic sensitivity test; Antimicrobial resistance; Antimicrobial susceptibility; Impedance spectroscopy.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources