Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Dec 16:12:787261.
doi: 10.3389/fphar.2021.787261. eCollection 2021.

Low-Dose Fluvoxamine Modulates Endocytic Trafficking of SARS-CoV-2 Spike Protein: A Potential Mechanism for Anti-COVID-19 Protection by Antidepressants

Affiliations

Low-Dose Fluvoxamine Modulates Endocytic Trafficking of SARS-CoV-2 Spike Protein: A Potential Mechanism for Anti-COVID-19 Protection by Antidepressants

Oleg O Glebov. Front Pharmacol. .

Abstract

Commonly prescribed antidepressants may be associated with protection against severe COVID-19. The mechanism of their action in this context, however, remains unknown. Here, I investigated the effect of an antidepressant drug fluvoxamine on membrane trafficking of the SARS-CoV-2 spike protein and its cell host receptor ACE2 in HEK293T cells. A sub-therapeutic concentration (80 nM) of fluvoxamine rapidly upregulated fluid-phase endocytosis, resulting in enhanced accumulation of the spike-ACE2 complex in enlarged early endosomes. Diversion of endosomal trafficking provides a simple cell biological mechanism consistent with the protective effect of antidepressants against COVID-19, highlighting their therapeutic and prophylactic potential.

Keywords: COVID-19; SARS-CoV-2; antidepressants; drug repurposing; endocytosis.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

FIGURE 1
FIGURE 1
Fluvoxamine modulates endocytosis, including that of SARS-CoV-2 spike protein. (A), HEK293T cells were allowed to internalise FM dye for 1 h. Representative images of cells incubated with vehicle or 80 nM fluvoxamine. Arrows denote puncta of internalised label. (B), Quantification of FM dye uptake experiments for various concentrations of fluvoxamine. ***p = 0.0001, Kruskal-Wallis test. ****p < 0.0001, *p < 0.05, Dunn’s multiple comparisons test. (C), HEK293T cells were allowed to internalise FluoroRuby for 1 h. Representative images of cells incubated with vehicle or 80 nM fluvoxamine. Arrows denote puncta of internalised label. (D), Quantification of FluoroRuby uptake experiments for various concentrations of fluvoxamine. **p < 0.01, 1-way ANOVA; ***p < 0.001, *p < 0.05, Holm-Sidak’s multiple comparisons test. (E), HEK293T cells were transfected with a plasmid expressing human ACE2, incubated with the recombinant SARS-CoV-2 spike protein for 1 h and sequentially immunostained for surface (cyan) and internalised (magenta) spike protein. Representative images of cells incubated with vehicle or 80 nM Fluvoxamine. Arrows denote apparent puncta of internalised spike protein. (F), Quantification of the spike protein uptake assay. ****p < 0.0001, unpaired two-tailed t test. (G), Quantification of surface ACE2 (live-labelled by spike protein) vs. total ACE2 labelling following 1 h treatment with 80 nM fluvoxamine. p > 0.05, Mann Whitney test. (H), Accumulation of Spike in EEA1-positive early endosomes following 1 h treatment with vehicle or 80 nM fluvoxamine. Arrows denote apparent puncta of internalised spike protein colocalising with EEA1 puncta. (I), Proposed model for modulation of SARS-CoV-2 endocytic trafficking by fluvoxamine. Fluvoxamine promotes accumulation of SARS-CoV-2 into early/recycling endosomes (EE/RE), thereby diverting it away from cell entry through the plasma membrane or late endosomes/lysosomes (LE/Lyso). Scale bar, 10 μm.

References

    1. Bayati A., Kumar R., Francis V., McPherson P. S. (2021). SARS-CoV-2 Infects Cells after Viral Entry via Clathrin-Mediated Endocytosis. J. Biol. Chem. 296, 100306. 10.1016/j.jbc.2021.100306 - DOI - PMC - PubMed
    1. Bolo N. R., Hodé Y., Nédélec J. F., Lainé E., Wagner G., Macher J. P. (2000). Brain Pharmacokinetics and Tissue Distribution In Vivo of Fluvoxamine and Fluoxetine by Fluorine Magnetic Resonance Spectroscopy. Neuropsychopharmacology 23, 428–438. 10.1016/S0893-133X(00)00116-0 - DOI - PubMed
    1. Brierley Liam. (2021). Lessons from the Influx of Preprints during the Early COVID-19 Pandemic - the Lancet Planetary Health. Lancet Planet. Health 5, 3e108–e175. 10.1016/S2542-5196(21)00011-5 - DOI - PubMed
    1. Burkard C., Verheije M. H., Wicht O., van Kasteren S. I., van Kuppeveld F. J., Haagmans B. L., et al. (2014). Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-dependent Manner. Plos Pathog. 10, e1004502. 10.1371/journal.ppat.1004502 - DOI - PMC - PubMed
    1. Carpinteiro A., Edwards M. J., Hoffmann M., Kochs G., Gripp B., Weigang S., et al. (2020). Pharmacological Inhibition of Acid Sphingomyelinase Prevents Uptake of SARS-CoV-2 by Epithelial Cells. Cell Rep. Med. 1, 100142. 10.1016/j.xcrm.2020.100142 - DOI - PMC - PubMed