Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Apr;23(4):e13409.
doi: 10.1111/obr.13409. Epub 2022 Jan 3.

Human microbiome and metabolic health: An overview of systematic reviews

Affiliations
Review

Human microbiome and metabolic health: An overview of systematic reviews

Nathalie Michels et al. Obes Rev. 2022 Apr.

Abstract

To summarize the microbiome's role in metabolic disorders (insulin resistance, hyperglycemia, type 2 diabetes, obesity, hyperlipidemia, hypertension, nonalcoholic fatty liver disease [NAFLD], and metabolic syndrome), systematic reviews on observational or interventional studies (prebiotics/probiotics/synbiotics/transplant) were searched in MEDLINE and Embase until September 2020. The 87 selected systematic reviews included 57 meta-analyses. Methodological quality (AMSTAR2) was moderate in 62%, 12% low, and 26% critically low. Observational studies on obesity (10 reviews) reported less gut bacterial diversity with higher Fusobacterium, Lactobacillus reuteri, Bacteroides fragilis, and Staphylococcus aureus, whereas lower Methanobrevibacter, Lactobacillus plantarum, Akkermansia muciniphila, and Bifidobacterium animalis compared with nonobese. For diabetes (n = 1), the same was found for Fusobacterium and A. muciniphila, whereas higher Ruminococcus and lower Faecalibacterium, Roseburia, Bacteroides vulgatus, and several Bifidobacterium spp. For NAFLD (n = 2), lower Firmicutes, Rikenellaceae, Ruminococcaceae, whereas higher Escherichia and Lactobacillus were detected. Discriminating bacteria overlapped between metabolic disorders, those with high abundance being often involved in inflammation, whereas those with low abundance being used as probiotics. Meta-analyses (n = 54) on interventional studies reported 522 associations: 54% was statistically significant with intermediate effect size and moderate between-study heterogeneity. Meta-evidence was highest for probiotics and lowest for fecal transplant. Future avenues include better methodological quality/comparability, testing functional differences, new intervention strategies, and considerating other body habitats and kingdoms.

Keywords: metabolic syndrome; microbiome; umbrella review.

PubMed Disclaimer

References

REFERENCES

    1. Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J am Coll Cardiol. 2020;76(25):2982-3021.
    1. Stefan N, Haring HU, Hu FB, Schulze MB. Metabolically healthy obesity: epidemiology, mechanisms, and clinical implications. Lancet Diabetes Endocrinol. 2013;1(2):152-162.
    1. Cornier MA, Dabelea D, Hernandez TL, et al. The metabolic syndrome. Endocr Rev. 2008;29(7):777-822.
    1. Lim S, Kim JW, Targher G. Links between metabolic syndrome and metabolic dysfunction-associated fatty liver disease. Trends Endocrin Met. 2021;32:500-514.
    1. Sattar N, Gill JMR, Alazawi W. Improving prevention strategies for cardiometabolic disease. Nat Med. 2020;26(3):320-325.

Publication types

LinkOut - more resources