Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jun;23(6):325-341.
doi: 10.1038/s41576-021-00438-5. Epub 2022 Jan 4.

Molecular mechanisms of transgenerational epigenetic inheritance

Affiliations
Free article
Review

Molecular mechanisms of transgenerational epigenetic inheritance

Maximilian H Fitz-James et al. Nat Rev Genet. 2022 Jun.
Free article

Abstract

Increasing evidence indicates that non-DNA sequence-based epigenetic information can be inherited across several generations in organisms ranging from yeast to plants to humans. This raises the possibility of heritable 'epimutations' contributing to heritable phenotypic variation and thus to evolution. Recent work has shed light on both the signals that underpin these epimutations, including DNA methylation, histone modifications and non-coding RNAs, and the mechanisms by which they are transmitted across generations at the molecular level. These mechanisms can vary greatly among species and have a more limited effect in mammals than in plants and other animal species. Nevertheless, common principles are emerging, with transmission occurring either via direct replicative mechanisms or indirect reconstruction of the signal in subsequent generations. As these processes become clearer we continue to improve our understanding of the distinctive features and relative contribution of DNA sequence and epigenetic variation to heritable differences in phenotype.

PubMed Disclaimer

References

    1. Cavalli, G. & Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature 571, 489–499 (2019). - PubMed - DOI
    1. Grewal, S. I. S. & Klar, A. J. S. Chromosomal inheritance of epigenetic states in fission yeast during mitosis and meiosis. Cell 86, 95–101 (1996). - PubMed - DOI
    1. Ekwall, K., Olsson, T., Turner, B. M., Cranston, G. & Allshire, R. C. Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91, 1021–1032 (1997). - PubMed - DOI
    1. Cavalli, G. & Paro, R. The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell 93, 505–518 (1998). - PubMed - DOI
    1. Morgan, H. D., Sutherland, H. G. E., Martin, D. I. K. & Whitelaw, E. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23, 314–318 (1999). - PubMed - DOI

Publication types