Implementation of a practical Markov chain Monte Carlo sampling algorithm in PyBioNetFit
- PMID: 34986226
- PMCID: PMC10060707
- DOI: 10.1093/bioinformatics/btac004
Implementation of a practical Markov chain Monte Carlo sampling algorithm in PyBioNetFit
Abstract
Summary: Bayesian inference in biological modeling commonly relies on Markov chain Monte Carlo (MCMC) sampling of a multidimensional and non-Gaussian posterior distribution that is not analytically tractable. Here, we present the implementation of a practical MCMC method in the open-source software package PyBioNetFit (PyBNF), which is designed to support parameterization of mathematical models for biological systems. The new MCMC method, am, incorporates an adaptive move proposal distribution. For warm starts, sampling can be initiated at a specified location in parameter space and with a multivariate Gaussian proposal distribution defined initially by a specified covariance matrix. Multiple chains can be generated in parallel using a computer cluster. We demonstrate that am can be used to successfully solve real-world Bayesian inference problems, including forecasting of new Coronavirus Disease 2019 case detection with Bayesian quantification of forecast uncertainty.
Availability and implementation: PyBNF version 1.1.9, the first stable release with am, is available at PyPI and can be installed using the pip package-management system on platforms that have a working installation of Python 3. PyBNF relies on libRoadRunner and BioNetGen for simulations (e.g. numerical integration of ordinary differential equations defined in SBML or BNGL files) and Dask.Distributed for task scheduling on Linux computer clusters. The Python source code can be freely downloaded/cloned from GitHub and used and modified under terms of the BSD-3 license (https://github.com/lanl/pybnf). Online documentation covering installation/usage is available (https://pybnf.readthedocs.io/en/latest/). A tutorial video is available on YouTube (https://www.youtube.com/watch?v=2aRqpqFOiS4&t=63s).
Supplementary information: Supplementary data are available at Bioinformatics online.
© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Figures

Similar articles
-
pyABC: distributed, likelihood-free inference.Bioinformatics. 2018 Oct 15;34(20):3591-3593. doi: 10.1093/bioinformatics/bty361. Bioinformatics. 2018. PMID: 29762723
-
Particle Gibbs sampling for Bayesian phylogenetic inference.Bioinformatics. 2021 May 5;37(5):642-649. doi: 10.1093/bioinformatics/btaa867. Bioinformatics. 2021. PMID: 33045053
-
MCMC_CLIB-an advanced MCMC sampling package for ODE models.Bioinformatics. 2014 Oct 15;30(20):2991-2. doi: 10.1093/bioinformatics/btu429. Epub 2014 Jul 7. Bioinformatics. 2014. PMID: 25005749
-
Bayesian inference using qualitative observations of underlying continuous variables.Bioinformatics. 2020 May 1;36(10):3177-3184. doi: 10.1093/bioinformatics/btaa084. Bioinformatics. 2020. PMID: 32049328 Free PMC article.
-
PyDREAM: high-dimensional parameter inference for biological models in python.Bioinformatics. 2018 Feb 15;34(4):695-697. doi: 10.1093/bioinformatics/btx626. Bioinformatics. 2018. PMID: 29028896 Free PMC article.
Cited by
-
Impacts of Vaccination and Severe Acute Respiratory Syndrome Coronavirus 2 Variants Alpha and Delta on Coronavirus Disease 2019 Transmission Dynamics in Four Metropolitan Areas of the United States.Bull Math Biol. 2024 Feb 14;86(3):31. doi: 10.1007/s11538-024-01258-4. Bull Math Biol. 2024. PMID: 38353870
-
Quantification of early nonpharmaceutical interventions aimed at slowing transmission of Coronavirus Disease 2019 in the Navajo Nation and surrounding states (Arizona, Colorado, New Mexico, and Utah).PLOS Glob Public Health. 2023 Jun 21;3(6):e0001490. doi: 10.1371/journal.pgph.0001490. eCollection 2023. PLOS Glob Public Health. 2023. PMID: 37342996 Free PMC article.
-
libRoadRunner 2.0: a high performance SBML simulation and analysis library.Bioinformatics. 2023 Jan 1;39(1):btac770. doi: 10.1093/bioinformatics/btac770. Bioinformatics. 2023. PMID: 36478036 Free PMC article.
-
Infrared: a declarative tree decomposition-powered framework for bioinformatics.Algorithms Mol Biol. 2024 Mar 16;19(1):13. doi: 10.1186/s13015-024-00258-2. Algorithms Mol Biol. 2024. PMID: 38493130 Free PMC article.
-
Quantification of early nonpharmaceutical interventions aimed at slowing transmission of Coronavirus Disease 2019 in the Navajo Nation and surrounding states (Arizona, Colorado, New Mexico, and Utah).medRxiv [Preprint]. 2023 Feb 16:2023.02.15.23285971. doi: 10.1101/2023.02.15.23285971. medRxiv. 2023. Update in: PLOS Glob Public Health. 2023 Jun 21;3(6):e0001490. doi: 10.1371/journal.pgph.0001490. PMID: 36824849 Free PMC article. Updated. Preprint.
References
-
- Andrieu C. et al. (2003) An introduction to MCMC for machine learning. Mach. Learn., 50, 5–43.
-
- Andrieu C., Thoms J. (2008) A tutorial on adaptive MCMC. Stat. Comput., 18, 343–373.
-
- Faeder J.R. et al. (2009) Rule-based modeling of biochemical systems with BioNetGen. Methods Mol. Biol., 500, 113–167. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials