Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Apr:385:693-707.
doi: 10.1113/jphysiol.1987.sp016515.

Effects of the calcium antagonist gallopamil (D600) upon excitation-contraction coupling in toe muscle fibres of the frog

Affiliations

Effects of the calcium antagonist gallopamil (D600) upon excitation-contraction coupling in toe muscle fibres of the frog

D Berwe et al. J Physiol. 1987 Apr.

Abstract

1. The effects of the Ca2+ antagonist gallopamil (D600) upon force development in short skeletal muscle fibres (m. lumbricalis digiti IV) of the frog were investigated under voltage-clamp control, using two flexible internal micro-electrodes (temperature = 6-7 degrees C). 2. In the presence of 5-100 microM-gallopamil muscle fibres developed one normal phasic contracture when they were depolarized from a holding potential of -90 to 0 mV. Subsequent depolarizations caused no mechanical response (paralysis). However, the ability to contract could be restored by hyperpolarizing the membrane to potentials between -120 and -150 mV. 3. In the absence of gallopamil, mechanical refractoriness could be fully reversed within 5-7 s by repolarizing the fibre from 0 to -120 mV. In the presence of 100 microM-gallopamil, no detectable restoration occurred within the first minute at -120 mV, and 45 to 100% of maximum force was eventually reached after 6 min of restoration. 4. The potential V at which the 'steady state' 50% of maximum force of a refractory fibre was restored shifted from -51 mV under normal conditions to -83 and -90 mV in the presence of 5 and 100 microM-gallopamil, respectively. 5. Paralysis in the presence of gallopamil and recovery from paralysis during hyperpolarization could also be observed when 2 mM-Cd2+ was applied to the external solution, i.e. when most Ca2+ channels in the T-tubular system were blocked. 6. Gallopamil shifted the threshold for activation of force to more negative potentials. Fibres developed force when they were depolarized to membrane potentials between -60 and -80 mV, whereby a fast phase of activation was followed by a slower one. Upon repolarization relaxation likewise occurred in a fast and a slow phase. 7. High concentrations of gallopamil (greater than 500 microM) caused a slowly developing contracture, independent of membrane potential (-90 or 0 mV). 8. It is proposed that gallopamil binds to a receptor at the force-controlling system in the T-tubular membrane (potential sensor) with a high affinity in the depolarized state and a lower affinity at negative potentials. Therefore association of gallopamil mainly leads to stabilization of the inactive state (paralysis) but can also stabilize the active state.

PubMed Disclaimer

References

    1. Nature. 1973 Mar 23;242(5395):244-6 - PubMed
    1. J Physiol. 1960 Sep;153:386-403 - PubMed
    1. Biochim Biophys Acta. 1977 Nov 14;472(3-4):373-98 - PubMed
    1. J Pharmacol Exp Ther. 1978 Apr;205(1):49-57 - PubMed
    1. J Physiol. 1979 Apr;289:175-89 - PubMed

Publication types

LinkOut - more resources