Radiolytic synthesis and characterization of selenium nanoparticles: comparative biosafety evaluation with selenite and ionizing radiation
- PMID: 34989895
- DOI: 10.1007/s11274-021-03218-9
Radiolytic synthesis and characterization of selenium nanoparticles: comparative biosafety evaluation with selenite and ionizing radiation
Abstract
The goal of this work is use a green chemistry route to synthesize selenium nanoparticles (SeNPs) that do not trigger oxidative stress, typical of metallic, oxide metallic and carbonaceous nanostructures, and supply the same beneficial effects as selenium nanostructures. SeNPs were synthesized using a radiolytic method involving irradiating a solution containing sodium selenite (Se4+) as the precursor in 1% Yeast extract, 2% Peptone, 2% Glucose (YPG) liquid medium with gamma-rays (60Cobalt). The method did not employ any hazardous reducing agents. Saccharomyces cerevisiae cells were incubated with 1 mM SeNPs for 24 h and/or then challenged with 400 Gy of ionizing radiation were assessed for viability and biomarkers of oxidative stress: lipid peroxidation, protein carbonylation, free radical generation, and total sulfhydryl content. Spherical SeNPs with variable diameters (from 100 to 200 nm) were formed after reactions of sodium selenite with hydrated electrons (eaq-) and hydrogen radicals (H·). Subsequent structural characterizations indicated an amorphous structure composed of elemental selenium (Se0). Compared to 1 mM selenite, SeNPs were considered safe and less toxic to Saccharomyces cerevisiae cells as did not elicit significant modifications in cell viability or oxidative stress parameters except for increased protein carbonylation. Furthermore, SeNPs treatment afforded some protection against ionizing radiation exposure. SeNPs produced using green chemistry attenuated the reactive oxygen species generation after in vitro ionizing radiation exposure opens up tremendous possibilities for radiosensitizer development.
Keywords: Biosafety; Oxidative stress; Radiolytic synthesis; Radiosensitizer; Saccharomyces cerevisiae; Selenium nanoparticles.
© 2021. The Author(s), under exclusive licence to Springer Nature B.V.
Similar articles
-
Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions.Microb Cell Fact. 2014 Mar 7;13(1):35. doi: 10.1186/1475-2859-13-35. Microb Cell Fact. 2014. PMID: 24606965 Free PMC article.
-
Sodium selenite/selenium nanoparticles (SeNPs) protect cardiomyoblasts and zebrafish embryos against ethanol induced oxidative stress.J Trace Elem Med Biol. 2015 Oct;32:135-44. doi: 10.1016/j.jtemb.2015.06.010. Epub 2015 Jul 17. J Trace Elem Med Biol. 2015. PMID: 26302921
-
Biological Selenite Reduction, Characterization and Bioactivities of Selenium Nanoparticles Biosynthesised by Pediococcus acidilactici DSM20284.Molecules. 2023 Apr 28;28(9):3793. doi: 10.3390/molecules28093793. Molecules. 2023. PMID: 37175203 Free PMC article.
-
Effects of selenium nanoparticles produced by Lactobacillus acidophilus HN23 on lipid deposition in WRL68 cells.Bioorg Chem. 2024 Apr;145:107165. doi: 10.1016/j.bioorg.2024.107165. Epub 2024 Feb 7. Bioorg Chem. 2024. PMID: 38367427 Review.
-
Biogenic selenium nanoparticles: current status and future prospects.Appl Microbiol Biotechnol. 2016 Mar;100(6):2555-66. doi: 10.1007/s00253-016-7300-7. Epub 2016 Jan 22. Appl Microbiol Biotechnol. 2016. PMID: 26801915 Review.
Cited by
-
Histopathological Evaluation of Radioprotective Effects: Selenium Nanoparticles Protect Lung Tissue from Radiation Damage.Adv Biomed Res. 2025 Jul 31;14:77. doi: 10.4103/abr.abr_525_24. eCollection 2025. Adv Biomed Res. 2025. PMID: 40862165 Free PMC article.
-
Allotropy of selenium nanoparticles: Colourful transition, synthesis, and biotechnological applications.Microb Biotechnol. 2023 May;16(5):877-892. doi: 10.1111/1751-7915.14209. Epub 2023 Jan 9. Microb Biotechnol. 2023. PMID: 36622050 Free PMC article. Review.
-
Plant Extracts for Production of Functionalized Selenium Nanoparticles.Materials (Basel). 2024 Jul 29;17(15):3748. doi: 10.3390/ma17153748. Materials (Basel). 2024. PMID: 39124412 Free PMC article. Review.
-
Radioprotective Effect of Selenium Nanoparticles: A Mini Review.IET Nanobiotechnol. 2024 Jan 25;2024:5538107. doi: 10.1049/2024/5538107. eCollection 2024. IET Nanobiotechnol. 2024. PMID: 38863968 Free PMC article.
-
A Recent Update on the Impact of Nano-Selenium on Plant Growth, Metabolism, and Stress Tolerance.Plants (Basel). 2023 Feb 14;12(4):853. doi: 10.3390/plants12040853. Plants (Basel). 2023. PMID: 36840201 Free PMC article. Review.
References
-
- Akçay FA, Avcı A (2020) Effects of process conditions and yeast extract on the synthesis of selenium nanoparticles by a novel indigenous isolate Bacillus sp. EKT1 and characterization of nanoparticles. Arch Microbiol 202:2233–2243. https://doi.org/10.1007/s00203-020-01942-8 - DOI - PubMed
-
- Amin KA, Hashem KS, Alshehri FS et al (2017) Antioxidant and hepatoprotective efficiency of selenium nanoparticles against acetaminophen-induced hepatic damage. Biol Trace Elem Res 175:136–145. https://doi.org/10.1007/s12011-016-0748-6 - DOI - PubMed
-
- Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312. https://doi.org/10.1039/b918763b - DOI - PubMed
-
- Armstrong DA, Huie RE, Koppenol WH et al (2015) Standard electrode potentials involving radicals in aqueous solution: inorganic radicals (IUPAC Technical Report). Pure Appl Chem 87:1139–1150. https://doi.org/10.1515/pac-2014-0502 - DOI
-
- Bai K, Hong B, Huang W, He J (2020) Selenium-nanoparticles-loaded chitosan/chitooligosaccharide microparticles and their antioxidant potential: a chemical and in vivo investigation. Pharmaceutics 12:43. https://doi.org/10.3390/pharmaceutics12010043 - DOI - PMC
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases