Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Feb 21;5(2):394-412.
doi: 10.1021/acsabm.1c00944. Epub 2022 Jan 7.

Near-Field Electrospinning: Crucial Parameters, Challenges, and Applications

Affiliations
Review

Near-Field Electrospinning: Crucial Parameters, Challenges, and Applications

Mohammad Mehdi Nazemi et al. ACS Appl Bio Mater. .

Abstract

Near-field electrospinning (NFES) is a micro- or nanofiber production technology based on jetting molten polymer or polymer solution. Thanks to the programmable collector and nozzle movement, it can generate designed patterns in the presence of an electric field. Despite a few shortcomings of NFES, its high resolution, simplicity, precision, high throughput, reproducibility, and low costs have convinced researchers to employ it for various purposes. Furthermore, as the paradigm of fiber-based structures shifts from random textures toward delicate designs, NFES can bridge the gap between existing inefficient processes and aspired technologies for precise patterning. NFES facilitates the production of ultrafine nanofibers because it can be used to fabricate them in every laboratory. These robust fibers are convenient tools for small and additive manufacturing. As such, NFES is considered a potent additive fabrication technology that facilitates the production of complicated patterns as well. It is suggested that near-field electrospun fibers exhibit outstanding results in various applications, owing to their precise and controllable positioning. Meanwhile, the ongoing development of NFES has yet to reach its climax, making it attractive for further research. In this review, the basic principles of NFES, derivatives, limitations, and applications in nanomanufacturing, tissue engineering, microscale electronics, biosensors, and optics are presented.

Keywords: additive manufacturing; direct-write electrospinning; e-jet printing; electrohydrodynamic printing; nanofibers.

PubMed Disclaimer

LinkOut - more resources