A comprehensive review on biodegradation of tetracyclines: Current research progress and prospect
- PMID: 34995606
- DOI: 10.1016/j.scitotenv.2021.152852
A comprehensive review on biodegradation of tetracyclines: Current research progress and prospect
Abstract
The release of tetracyclines (TCs) in the environment is of significant concern because the residual antibiotics may promote resistance in pathogenic microorganisms, and the transfer of antibiotic resistance genes poses a potential threat to ecosystems. Microbial biodegradation plays an important role in removing TCs in both natural and artificial systems. After long-term acclimation, microorganisms that can tolerate and degrade TCs are retained to achieve efficient removal of TCs under the optimum conditions (e.g. optimal operational parameters and moderate concentrations of TCs). To date, cultivation-based techniques have been used to isolate bacteria or fungi with potential degradation ability. Moreover, the biodegradation mechanism of TCs can be unveiled with the development of chemical analysis (e.g. UPLC-Q-TOF mass spectrometer) and molecular biology techniques (e.g. 16S rRNA gene sequencing, multi-omics sequencing, and whole genome sequencing). In this review, we made an overview of the biodegradation of TCs in different systems, refined functional microbial communities and pure isolates relevant to TCs biodegradation, and summarized the biodegradation products, pathways, and degradation genes of TCs. In addition, ecological risks of TCs biodegradation were considered from the perspectives of metabolic products toxicity and resistance genes. Overall, this article aimed to outline the research progress of TCs biodegradation and propose future research prospects.
Keywords: Degradation mechanism; Ecological risk; Microbial community; Pure isolates.
Copyright © 2022 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources