Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jan 1;18(2):873-888.
doi: 10.7150/ijbs.68093. eCollection 2022.

Secreted Phospholipases A2 - not just Enzymes: Revisited

Affiliations
Review

Secreted Phospholipases A2 - not just Enzymes: Revisited

Adrijan Ivanušec et al. Int J Biol Sci. .

Abstract

Secreted phospholipases A2 (sPLA2s) participate in a very broad spectrum of biological processes through their enzymatic activity and as ligands for membrane and soluble receptors. The physiological roles of sPLA2s as enzymes have been very well described, while their functions as ligands are still poorly known. Since the last overview of sPLA2-binding proteins (sPLA2-BPs) 10 years ago, several important discoveries have occurred in this area. New and more sensitive analytical tools have enabled the discovery of additional sPLA2-BPs, which are presented and critically discussed here. The structural diversity of sPLA2-BPs reveals sPLA2s as very promiscuous proteins, and we offer some structural explanations for this nature that makes these proteins evolutionarily highly advantageous. Three areas of physiological engagement of sPLA2-BPs have appeared most clearly: cellular transport and signalling, and regulation of the enzymatic activity of sPLA2s. Due to the multifunctionality of sPLA2s, they appear to be exceptional pharmacological targets. We reveal the potential to exploit interactions of sPLA2s with other proteins in medical terms, for the development of original diagnostic and therapeutic procedures. We conclude this survey by suggesting the priority questions that need to be answered.

Keywords: Secreted phospholipase A2; binding protein; cell transport; phospholipase activity regulation; promiscuity; signalling.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interest exists.

Figures

Figure 1
Figure 1
Distinct structural elements present in more than one type of sPLA2-BP. (A) CRD (PDB ID: 6JLI) and the CRD-like fold are structural elements found in M-type sPLA2Rs, SP-A and α-PLIs. (B) The EF-hand Ca2+-binding motif (PDB ID: 1CLL) is found in CaM, crocalbin and TCBP-49, which all bind sPLA2s. (C) The Ig-like domain (PDB ID: 2X1X) is found in VEGFRs and DM64. To date, only the CRD has been experimentally demonstrated to be a sPLA2-binding structure. Red, α-helices; violet, β-sheets; grey, loops. The Figure was prepared using UCSF Chimera v1.15.
Figure 2
Figure 2
Secreted PLA2s are ligands of proteins that are structurally very diverse. The three-dimensional models, generated by molecular docking, are showing complexes between the sPLA2 Atx and CaM (green, PDB ID: 1CLL) (A), Atx and FXa (blue, PDB ID: 2BOH) (B), CBb and ΔF508NBD1 of CFTR (PDB ID: 1XMJ) (C), Atx and PDI (purple/pink, PDB ID: 4EL1) (D), and between the sPLA2 vurtoxin and nAChR (grey, PDB ID: 2BG9) (E). Centre: The sPLA2 Atx, showing its main structural elements. Red, interfacial binding surface; yellow, disulphide bonds; violet, C-terminal region. Note that the sPLA2s interact with these different sPLA2-BPs in very different ways; i.e., they have multiple protein binding sites, as is characteristic of promiscuous proteins. The Figure was prepared by adaptation of Figures from Kovačič et al. (2010) (A), Faure and Saul (2011) (B), Faure et al. (2016) (C), Oberčkal et al. (2015) (D) and Vulfius et al. (2014) (E), using PyMOL.
Figure 3
Figure 3
Pathophysiological implications of binding of sPLA2s to sPLA2-BPs. Physiological and/or pathological effects of sPLA2s (red) are also the consequence of their binding to sPLA2-BPs. (A) By binding to sPLA2-BPs (blue/cyan), sPLA2s can be translocated to specific intracellular compartments, such as the endoplasmic reticulum (a), cytosol (b), nucleus (c), mitochondria (d) or lysosomes (e). In each of these compartments, they can act as enzymes or ligands for receptors, or they can undergo proteolytic degradation in the lysosome. (B) As ligands for receptors, sPLA2s have been specifically implicated in molecular signalling through decreased (1) or increased (2) permeabilities of certain ion channels, inhibition (3) or activation (4) of activities of receptor tyrosine kinases, modulation of activities of GPCR (5), interference in integrin-mediated functions (6), attenuation of ATP production (7) and inhibition of blood coagulation, at different stages (8, 9, 10). (C) Binding of sPLA2 to a sPLA2-BP might inhibit or potentiate phospholipolytic activity. The Figure was created with BioRender.com.

Similar articles

Cited by

References

    1. Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: Physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chemical Reviews. 2011;111:6130–85. - PMC - PubMed
    1. Murakami M, Sato H, Taketomi Y. Updating phospholipase A2 biology. Biomolecules. 2020;10:1–33. - PMC - PubMed
    1. Lomonte B, Križaj I. Snake Venom Phospholipase A2 Toxins. In: Mackessy S, ed. Handbook of Venoms and Toxins of Reptiles, 2nd ed. Boca Raton: CRC Press. 2021. pp. 389–412.
    1. Murakami M. Novel functions of phospholipase A2 s: Overview. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. 2019;1864:763–5. - PubMed
    1. Rehm H, Betz H. Binding of β-bungarotoxin to synaptic membrane fractions of chick brain. Journal of Biological Chemistry. 1982;257:10015–22. - PubMed

Publication types

Substances