Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Nov;7(11):3654-64.
doi: 10.1523/JNEUROSCI.07-11-03654.1987.

Correlations between active zone ultrastructure and synaptic function studied with freeze-fracture of physiologically identified neuromuscular junctions

Affiliations

Correlations between active zone ultrastructure and synaptic function studied with freeze-fracture of physiologically identified neuromuscular junctions

J W Propst et al. J Neurosci. 1987 Nov.

Abstract

The active zone is a unique presynaptic membrane specialization that is believed to be the site of neurotransmitter release. To examine directly the relationship between active zone ultrastructure and synaptic efficacy, frog neuromuscular junctions were studied with a new technique combining electrophysiology, light microscopy, and freeze-fracture of identified single muscle fibers. This technique allows correlations to be made between quantal content (measured in low Ca2+ and high Mg2+ Ringer solution), endplate size, and active zone structure at the same neuromuscular junctions. By measuring physiological and morphological variables at the same junctions, the validity of structure-function correlations is significantly improved. Synaptic quantal content in 91 physiologically identified muscle fibers varied considerably and was only poorly correlated with endplate size, as shown in previous studies. To measure the total length of endplate branches, either a modified cholinesterase stain or rhodamine-labeled peanut agglutinin stain was used. When the same identified muscle fibers were freeze-fractured, active zones were exposed in 17 junctions. In a replica that contained a large part of one nerve terminal, there was no detectable gradient in active zone structure along the length of 3 different nerve terminal branches identifiable with both light and electron microscopy. The results from these 17 identified junctions indicate that quantal content per unit terminal length is positively correlated with the amount of active zone per unit terminal length. The estimated total active zone length and total number of active zone particles per junction are also positively correlated with the quantal content in these identified junctions. This study suggests that active zone size and spacing are better indicators of transmitter release than is endplate size and that the active zone may play an important role in regulating synaptic efficacy at the neuromuscular junction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources