Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Dec 23:8:766339.
doi: 10.3389/fcvm.2021.766339. eCollection 2021.

South Asian-Specific MYBPC3 Δ25bp Deletion Carriers Display Hypercontraction and Impaired Diastolic Function Under Exercise Stress

Affiliations

South Asian-Specific MYBPC3 Δ25bp Deletion Carriers Display Hypercontraction and Impaired Diastolic Function Under Exercise Stress

Sholeh Bazrafshan et al. Front Cardiovasc Med. .

Abstract

Background: A 25-base pair (25bp) intronic deletion in the MYBPC3 gene enriched in South Asians (SAs) is a risk allele for late-onset left ventricular (LV) dysfunction, hypertrophy, and heart failure (HF) with several forms of cardiomyopathy. However, the effect of this variant on exercise parameters has not been evaluated. Methods: As a pilot study, 10 asymptomatic SA carriers of the MYBPC3 Δ25bp variant (52.9 ± 2.14 years) and 10 age- and gender-matched non-carriers (NCs) (50.1 ± 2.7 years) were evaluated at baseline and under exercise stress conditions using bicycle exercise echocardiography and continuous cardiac monitoring. Results: Baseline echocardiography parameters were not different between the two groups. However, in response to exercise stress, the carriers of Δ25bp had significantly higher LV ejection fraction (%) (CI: 4.57 ± 1.93; p < 0.0001), LV outflow tract peak velocity (m/s) (CI: 0.19 ± 0.07; p < 0.0001), and higher aortic valve (AV) peak velocity (m/s) (CI: 0.103 ± 0.08; p = 0.01) in comparison to NCs, and E/A ratio, a marker of diastolic compliance, was significantly lower in Δ25bp carriers (CI: 0.107 ± 0.102; p = 0.038). Interestingly, LV end-diastolic diameter (LVIDdia) was augmented in NCs in response to stress, while it did not increase in Δ25bp carriers (CI: 0.239 ± 0.125; p = 0.0002). Further, stress-induced right ventricular systolic excursion velocity s' (m/s), as a marker of right ventricle function, increased similarly in both groups, but tricuspid annular plane systolic excursion increased more in carriers (slope: 0.008; p = 0.0001), suggesting right ventricle functional differences between the two groups. Conclusions: These data support that MYBPC3 Δ25bp is associated with LV hypercontraction under stress conditions with evidence of diastolic impairment.

Keywords: 25bp deletion; DOSA study; MYBPC3; South Asians; hypertrophic cardiomyopathy; myosin binding protein-C; stress echocardiography; ventricular diastolic dysfunction.

PubMed Disclaimer

Conflict of interest statement

SS provides consulting and collaborative research studies to the Leducq Foundation (CURE-PLAN), Red Saree Inc., Greater Cincinnati Tamil Sangam, Pfizer, Novo Nordisk, AstraZeneca, MyoKardia, Merck, and Amgen. EM serves as a consultant to AstraZeneca, Amgen, Pfizer, Tenaya Therapeutics, and Invitae. RB serves on scientific advisory boards for Janssen and Basking Biosciences and DSMB Committees for Ionis Pharmaceuticals, Akcea Therapeutics, and Novartis. These activities are unrelated to the content of this work. RRS has been a postdoctoral fellow of Amgen, starting from June 2019, and performs research at the University of Cincinnati. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
MYBPC3Δ25bp genotyping and prevalence. (A) Schematic diagram of the MYBPC3 gene that includes the location of MYBPC3Δ25bp variant in Intron 32. Exon 33 is highlighted in blue as a potential skipped exon and altered splicing exon when the MYBPC3Δ25bp variant is pathogenic. (B) cMyBP-C domains are drawn with interacting partners, proline-alanine (Pro-Ala)-rich region, phosphorylation motif, and potential C10 domain that could be modified if exon 33 is altered (DC10). (C) Agarose gel electrophoresis of PCR-based genotyping of the MYBPC3Δ25bp variant. (D) MYBPC3Δ25bp distribution of 3,432 South Asian participants. Among carriers of the MYBPC3Δ25bp variant, 6.61% of carriers (227, red color sector) were heterozygous (Het), and 0.14% of carriers (5, blue color sector) were homozygous (Homo). NCs, non-carriers.
Figure 2
Figure 2
Flow chart depicting the recruitment process, employed questionnaires, and echocardiography and clinical data analyses for the genotype-phenotype study. (A) Carriers of MYBPC3Δ25bp variant and age- and gender-matched non-carriers 18 years of age and older of US SA ancestry were recruited. Then, past medical and medication history was collected using a prerecruitment questionnaire, and, if no contraindication, subjects were scheduled to perform an exercise stress test using a bicycle ergometer. (B) On the test day, informed consent was obtained; then, a comorbidity questionnaire was used to collect comprehensive medical, medication, social, habit, and family history information from all participants. To look for other genetic modifiers via NGS testing, a 10-ml blood sample was collected. Compliance with exercise stress test instructions was evaluated via a pre-procedure questionnaire. Cardiac function was evaluated by ECG and TTE at rest and by bicycle ergometer during exercise stress testing for any detectable underlying risk factor. (C) While blinded, two observers independently measured echocardiography variables. Statistical significance (p < 0.05) was calculated using two-way ANOVA and simple linear regression, and the results were reported as mean ± SEM. SA = South Asian, NGS = next-generation sequencing. TTE, transthoracic echocardiography.
Figure 3
Figure 3
Spectral Doppler data depict LVOT peak velocity. Representative apical five-chamber view at baseline, 45 (W), and 105 (W) in a NC (upper panel) subject and a MYBPC3Δ25bp variant carrier (lower panel). NC, non-carriers.
Figure 4
Figure 4
Prevalent South Asian-specific MYBPC3Δ25bp variant is associated with hypercontraction and impaired relaxation under exercise stress (10 NCs vs. 10 MYBPC3Δ25bp carriers). (A) A significant difference in LVIDdia is observed between carriers of the MYBPC3Δ25bp variant and NCs (Two-way ANOVA, p = 0.0002; CI: 0.239 ± 0.125). In response to stress, LVIDdia increases significantly from baseline in NCs, whereas it does not significantly change in MYBPC3Δ25bp carriers. (B) The graph depicts a non-significant difference between MYBPC3Δ25bp variant carriers and NCs in LVIDs in response to stress (Two-way ANOVA, p = 0.061; CI: 0.09 ± 0.09). In addition, carriers of the MYBPC3Δ25bp variant show significantly higher (C) ejection fraction (CI: 4.57 ± 1.93) and (D) LVOT peak velocity (CI: 0.197 ± 0.069) compared to NCs (Two-way ANOVA, p < 0.0001, both). (E) With exercise, the average E/A ratio shows a significant difference between MYBPC3Δ25bp carriers and NCs (Two-way ANOVA, p < 0.038; CI: 0.107 ± 0.102). (F) The graph depicts significantly higher aortic valve peak velocity in MYBPC3Δ25bp variant carriers compared to NCs (Two-way ANOVA, p < 0.012; CI: 0.103 ± 0.081). LVIDdia, left ventricular internal diameter in diastole; LVIDs, left ventricular internal diameter in systole; LVOT, left ventricular outflow tract; NC, non-carriers.

Similar articles

Cited by

References

    1. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study Coronary Artery Risk Development in (Young) Adults. Circulation. (1995) 92:785–9. 10.1161/01.CIR.92.4.785 - DOI - PubMed
    1. Maron BJ, Peterson EE, Maron MS, Peterson JE. Prevalence of hypertrophic cardiomyopathy in an outpatient population referred for echocardiographic study. Am J Cardiol. (1994) 73:577–80. 10.1016/0002-9149(94)90337-9 - DOI - PubMed
    1. Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. (2015) 65:1249–54. 10.1016/j.jacc.2015.01.019 - DOI - PubMed
    1. Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, et al. . 2020 AHA/ACC Guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. (2020) 142:e533–57. 10.1161/CIR.0000000000000938 - DOI - PubMed
    1. Watkins H, MacRae C, Thierfelder L, Chou YH, Frenneaux M, McKenna W, et al. . A disease locus for familial hypertrophic cardiomyopathy maps to chromosome 1q3. Nat Genet. (1993) 3:333–7. 10.1038/ng0493-333 - DOI - PubMed