Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun:40:100950.
doi: 10.1016/j.ijcha.2021.100950. Epub 2022 Jan 4.

Subclinical myocardial injury, coagulopathy, and inflammation in COVID-19: A meta-analysis of 41,013 hospitalized patients

Affiliations

Subclinical myocardial injury, coagulopathy, and inflammation in COVID-19: A meta-analysis of 41,013 hospitalized patients

Oluwabunmi Ogungbe et al. Int J Cardiol Heart Vasc. 2022 Jun.

Abstract

Background: Infection with the SARS-CoV-2 virus can lead to myocardial injury, evidenced by increases in specific biomarkers and imaging.

Objective: To quantify the association between biomarkers of myocardial injury, coagulation, and severe COVID-19 and death in hospitalized patients.

Methods: Studies were identified through a systematic search of indexed articles in PubMed, Embase, CINAHL, Cochrane, Web of Science, and Scopus, published between December 2019 to August 2021. Effect estimates from individual studies for association between markers of myocardial injury (Troponin), myocardial stretch (N-terminal-pro hormone BNP, NT-proBNP), and coagulopathy (D-Dimer) and death or severe/critical COVID-19 were pooled using inverse variance weighted random-effects model. Odds Ratios (OR), Hazard Ratios (HR), and 95% Confidence Intervals (CI) were pooled separately and reported by outcomes of critical/severe COVID-19 and death. A meta-analysis of proportions was also performed to summarize the pooled prevalence of co-morbidities in patients hospitalized with COVID-19.

Results: We included 62 articles, with a total of 41,013 patients. The pooled proportion of patients with history of hypertension was 39% (95% CI: 34-44%); diabetes, 21% (95% CI: 18%-24%); coronary artery disease, 13% (95% CI: 10-16%); chronic obstructive pulmonary disease, 7% (95% CI: 5-8%); and history of cancer, 5% (95% CI: 4-7%). Elevated troponin was associated with higher pooled odds of critical/severe COVID-19 and death [Odds Ratio (OR: 1.76, 95% CI: 1.42-2.16)]; and also separately for death (OR: 1.72, 95% CI: 1.32-2.25), and critical/severe COVID-1919 (OR: 1.93, 95% CI: 1.45-2.40). Elevations in NT-proBNP were also associated with higher severe COVID-19 and death (OR: 3.00, 95% CI: 1.58-5.70). Increases in D-dimer levels was also significantly associated with critical/severe COVID-19 and death (pooled OR: 1.38, 95% CI: 1.07-1.79).

Conclusions: This meta-analysis synthesizes existing evidence showing that myocardial injury, and coagulopathy are complications of COVID-19. The durability of these complications and their contributions to long-term cardiac implications of the disease is still being investigated. Patients who have recovered from COVID-19 may benefit from minimally invasive assessment for markers of myocardial injury, stretch and coagulopathy for early risk stratification purposes.

Keywords: COVID-19; Inflammation; Meta-analysis; Myocardial injury; SARS-CoV-2; Troponin.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Figures

Fig. 1
Fig. 1
PRISMA flowchart showing study search and selection.
Fig. 2
Fig. 2
Pooled proportion for history of hypertension.
Fig. 3
Fig. 3
Association between biomarkers of myocardial injury, stretch and coagulation with severe COVID-19 and death: meta-analysis results.
Fig. 3
Fig. 3
Association between biomarkers of myocardial injury, stretch and coagulation with severe COVID-19 and death: meta-analysis results.
Fig. 3
Fig. 3
Association between biomarkers of myocardial injury, stretch and coagulation with severe COVID-19 and death: meta-analysis results.

Similar articles

Cited by

References

    1. Guzik T.J., Mohiddin S.A., Dimarco A., et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020;116(10):1666–1687. doi: 10.1093/cvr/cvaa106. Aug 1. - DOI - PMC - PubMed
    1. Wiersinga W.J., Rhodes A., Cheng A.C., Peacock S.J., Prescott H.C. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review. JAMA. 2020;324(8):782–793. doi: 10.1001/jama.2020.12839. - DOI - PubMed
    1. Nalbandian A., Sehgal K., Gupta A., Madhavan M.V., McGroder C., Stevens J.S., Cook J.R., Nordvig A.S., Shalev D., Sehrawat T.S., Ahluwalia N., Bikdeli B., Dietz D., Der-Nigoghossian C., Liyanage-Don N., Rosner G.F., Bernstein E.J., Mohan S., Beckley A.A., Seres D.S., Choueiri T.K., Uriel N., Ausiello J.C., Accili D., Freedberg D.E., Baldwin M., Schwartz A., Brodie D., Garcia C.K., Elkind M.S.V., Connors J.M., Bilezikian J.P., Landry D.W., Wan E.Y. Post-acute COVID-19 syndrome. Nat. Med. 2021;27(4):601–615. doi: 10.1038/s41591-021-01283-z. - DOI - PMC - PubMed
    1. Azkur A.K., Akdis M., Azkur D., Sokolowska M., Veen W., Brüggen M.-C., O’Mahony L., Gao Y., Nadeau K., Akdis C.A. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020;75(7):1564–1581. doi: 10.1111/all.14364. - DOI - PMC - PubMed
    1. Wang J., Jiang M., Chen X., Montaner L.J. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J. Leukoc. Biol. 2020;108(1):17–41. doi: 10.1002/JLB.3COVR0520-272R. - DOI - PMC - PubMed