Use of Artificial Intelligence in Non-Oncologic Interventional Radiology: Current State and Future Directions
- PMID: 35005333
- PMCID: PMC8740955
- DOI: 10.1055/s-0041-1726300
Use of Artificial Intelligence in Non-Oncologic Interventional Radiology: Current State and Future Directions
Abstract
The future of radiology is disproportionately linked to the applications of artificial intelligence (AI). Recent exponential advancements in AI are already beginning to augment the clinical practice of radiology. Driven by a paucity of review articles in the area, this article aims to discuss applications of AI in non-oncologic IR across procedural planning, execution, and follow-up along with a discussion on the future directions of the field. Applications in vascular imaging, radiomics, touchless software interactions, robotics, natural language processing, post-procedural outcome prediction, device navigation, and image acquisition are included. Familiarity with AI study analysis will help open the current 'black box' of AI research and help bridge the gap between the research laboratory and clinical practice.
Keywords: artificial intelligence; deep learning; interventional radiology; machine learning; radiomics.
Figures

Similar articles
-
Artificial Intelligence, Augmented Reality, and Virtual Reality Advances and Applications in Interventional Radiology.Diagnostics (Basel). 2023 Feb 27;13(5):892. doi: 10.3390/diagnostics13050892. Diagnostics (Basel). 2023. PMID: 36900036 Free PMC article. Review.
-
Artificial intelligence in interventional radiology: state of the art.Eur Radiol Exp. 2024 May 2;8(1):62. doi: 10.1186/s41747-024-00452-2. Eur Radiol Exp. 2024. PMID: 38693468 Free PMC article. Review.
-
Prime Time for Artificial Intelligence in Interventional Radiology.Cardiovasc Intervent Radiol. 2022 Mar;45(3):283-289. doi: 10.1007/s00270-021-03044-4. Epub 2022 Jan 14. Cardiovasc Intervent Radiol. 2022. PMID: 35031822 Free PMC article. Review.
-
Artificial intelligence in interventional radiology: Current concepts and future trends.Diagn Interv Imaging. 2025 Jan;106(1):5-10. doi: 10.1016/j.diii.2024.08.004. Epub 2024 Sep 11. Diagn Interv Imaging. 2025. PMID: 39261225 Review.
-
AI and Interventional Radiology: A Narrative Review of Reviews on Opportunities, Challenges, and Future Directions.Diagnostics (Basel). 2025 Apr 1;15(7):893. doi: 10.3390/diagnostics15070893. Diagnostics (Basel). 2025. PMID: 40218243 Free PMC article. Review.
Cited by
-
Artificial Intelligence, Augmented Reality, and Virtual Reality Advances and Applications in Interventional Radiology.Diagnostics (Basel). 2023 Feb 27;13(5):892. doi: 10.3390/diagnostics13050892. Diagnostics (Basel). 2023. PMID: 36900036 Free PMC article. Review.
-
Interventional Radiology Procedures and Anesthesia Practices: A Bibliometric Analysis.Cureus. 2025 May 1;17(5):e83324. doi: 10.7759/cureus.83324. eCollection 2025 May. Cureus. 2025. PMID: 40452734 Free PMC article. Review.
-
Ethical Considerations for Artificial Intelligence in Interventional Radiology: Balancing Innovation and Patient Care.Semin Intervent Radiol. 2023 Jul 20;40(3):323-326. doi: 10.1055/s-0043-1769905. eCollection 2023 Jun. Semin Intervent Radiol. 2023. PMID: 37484438 Free PMC article. Review. No abstract available.
-
Quantitative Automated Segmentation of Lipiodol Deposits on Cone-Beam CT Imaging Acquired during Transarterial Chemoembolization for Liver Tumors: A Deep Learning Approach.J Vasc Interv Radiol. 2022 Mar;33(3):324-332.e2. doi: 10.1016/j.jvir.2021.12.017. Epub 2021 Dec 16. J Vasc Interv Radiol. 2022. PMID: 34923098 Free PMC article.
-
Artificial intelligence in interventional radiology: state of the art.Eur Radiol Exp. 2024 May 2;8(1):62. doi: 10.1186/s41747-024-00452-2. Eur Radiol Exp. 2024. PMID: 38693468 Free PMC article. Review.
References
-
- Artificial Intelligence and Machine Learning in Software as a Medical Device Software as a Medical Device (SaMD) https://www.fda.gov/medical-devices/software-medical-device-samd/artific.... Accessed 10/20, 2020.
-
- Sailer AM, Tipaldi MA, Krokidis M. AI in Interventional Radiology: There is Momentum for High-Quality Data Registries. Cardiovasc Intervent Radiol. 2019;42(8):1208–1209. - PubMed
-
- Hendee WR, Becker GJ, Borgstede JP, et al. Addressing overutilization in medical imaging. Radiology. 2010;257(1):240–245. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous