Colonies of the marine cyanobacterium Trichodesmium optimize dust utilization by selective collection and retention of nutrient-rich particles
- PMID: 35005537
- PMCID: PMC8718973
- DOI: 10.1016/j.isci.2021.103587
Colonies of the marine cyanobacterium Trichodesmium optimize dust utilization by selective collection and retention of nutrient-rich particles
Abstract
Trichodesmium, a globally important, N2-fixing, and colony-forming cyanobacterium, employs multiple pathways for acquiring nutrients from air-borne dust, including active dust collection. Once concentrated within the colony core, dust can supply Trichodesmium with nutrients. Recently, we reported a selectivity in particle collection enabling Trichodesmium to center iron-rich minerals and optimize its nutrient utilization. In this follow-up study we examined if colonies select Phosphorus (P) minerals. We incubated 1,200 Trichodesmium colonies from the Red Sea with P-free CaCO3, P-coated CaCO3, and dust, over an entire bloom season. These colonies preferably interacted, centered, and retained P-coated CaCO3 compared with P-free CaCO3. In both studies, Trichodesmium clearly favored dust over all other particles tested, whereas nutrient-free particles were barely collected or retained, indicating that the colonies sense the particle composition and preferably collect nutrient-rich particles. This unique ability contributes to Trichodesmium's current ecological success and may assist it to flourish in future warmer oceans.
Keywords: Ecology; Geomicrobiology; Microbiology.
© 2021 The Authors.
Conflict of interest statement
The authors declare that they have no conflict of interest.
Figures










Similar articles
-
Selective collection of iron-rich dust particles by natural Trichodesmium colonies.ISME J. 2020 Jan;14(1):91-103. doi: 10.1038/s41396-019-0505-x. Epub 2019 Sep 24. ISME J. 2020. PMID: 31551530 Free PMC article.
-
Colonies of marine cyanobacteria Trichodesmium interact with associated bacteria to acquire iron from dust.Commun Biol. 2019 Aug 2;2:284. doi: 10.1038/s42003-019-0534-z. eCollection 2019. Commun Biol. 2019. PMID: 31396564 Free PMC article.
-
Mechanisms and heterogeneity of in situ mineral processing by the marine nitrogen fixer Trichodesmium revealed by single-colony metaproteomics.ISME Commun. 2021 Jul 13;1(1):35. doi: 10.1038/s43705-021-00034-y. ISME Commun. 2021. PMID: 36739337 Free PMC article.
-
Better together? Lessons on sociality from Trichodesmium.Trends Microbiol. 2023 Oct;31(10):1072-1084. doi: 10.1016/j.tim.2023.05.001. Epub 2023 May 25. Trends Microbiol. 2023. PMID: 37244772 Review.
-
The nitrogen physiology of the marine N2-fixing cyanobacteria Trichodesmium spp.Trends Plant Sci. 2000 Apr;5(4):148-53. doi: 10.1016/s1360-1385(00)01576-4. Trends Plant Sci. 2000. PMID: 10740295 Review.
Cited by
-
Single-colony MALDI mass spectrometry imaging reveals spatial differences in metabolite abundance between natural and cultured Trichodesmium morphotypes.mSystems. 2024 Oct 22;9(10):e0115224. doi: 10.1128/msystems.01152-24. Epub 2024 Sep 24. mSystems. 2024. PMID: 39315778 Free PMC article.
-
Phosphorus deficiency alleviates iron limitation in Synechocystis cyanobacteria through direct PhoB-mediated gene regulation.Nat Commun. 2024 May 24;15(1):4426. doi: 10.1038/s41467-024-48847-4. Nat Commun. 2024. PMID: 38789507 Free PMC article.
-
Recurrent association between Trichodesmium colonies and calcifying amoebae.ISME Commun. 2024 Nov 4;4(1):ycae137. doi: 10.1093/ismeco/ycae137. eCollection 2024 Jan. ISME Commun. 2024. PMID: 39564584 Free PMC article.
-
Metagenomes of Red Sea Subpopulations Challenge the Use of Marker Genes and Morphology to Assess Trichodesmium Diversity.Front Microbiol. 2022 May 30;13:879970. doi: 10.3389/fmicb.2022.879970. eCollection 2022. Front Microbiol. 2022. PMID: 35707175 Free PMC article.
-
Taxonomic distribution of metabolic functions in bacteria associated with Trichodesmium consortia.mSystems. 2023 Dec 21;8(6):e0074223. doi: 10.1128/msystems.00742-23. Epub 2023 Nov 2. mSystems. 2023. PMID: 37916816 Free PMC article.
References
-
- Aguilar-Islas A.M., Wu J., Rember R., Johansen A.M., Shank L.M. Dissolution of aerosol-derived iron in seawater: Leach solution chemistry, aerosol type, and colloidal iron fraction. Mar. Chem. 2010;120:25–33. doi: 10.1016/j.marchem.2009.01.011. - DOI
-
- Ammerman J.W., Hood R.R., Case D.A., Cotner J.B. Phosphorus deficiency in the Atlantic: An emerging paradigm in oceanography. Eos, Trans. Am. Geophys. Union. 2003;84:165–170. doi: 10.1029/2003EO180001. - DOI
-
- Anderson L.D., Faul K.L., Paytan A. Phosphorus associations in aerosols: What can they tell us about P bioavailability? Mar. Chem. 2010;120:44–56. doi: 10.1016/j.marchem.2009.04.008. - DOI
-
- Barkley A.E., Prospero J.M., Mahowald N., Hamilton D.S., Popendorf K.J., Oehlert A.M., Pourmand A., Gatineau A., Panechou-Pulcherie K., Blackwelder P., Gaston C.J. African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean. Proc. Natl. Acad. Sci. U. S. A. 2019;116:16216–16221. doi: 10.1073/pnas.1906091116. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources