Elucidating complex triplet-state dynamics in the model system isopropylthioxanthone
- PMID: 35005547
- PMCID: PMC8717599
- DOI: 10.1016/j.isci.2021.103600
Elucidating complex triplet-state dynamics in the model system isopropylthioxanthone
Abstract
We introduce techniques for probing the dynamics of triplet states. We employ these tools, along with conventional techniques, to develop a detailed understanding of a complex chemical system: a negative-tone, radical photoresist for multiphoton absorption polymerization in which isopropylthioxanthone (ITX) is the photoinitiator. This work reveals that the same color of light used for the 2-photon excitation of ITX, leading to population of the triplet manifold through intersystem crossing, also depletes this triplet population via linear absorption followed by reverse intersystem crossing (RISC). Using spectroscopic tools and kinetic modeling, we identify the reactive triplet state and a non-reactive reservoir triplet state. We present compelling evidence that the deactivation channel involves RISC from an excited triplet state to a highly vibrationally excited level of the electronic ground state. The work described here offers the enticing possibility of understanding, and ultimately controlling, the photochemistry and photophysics of a broad range of triplet processes.
Keywords: Chemistry; Nonlinear optics; Theoretical photophysics.
© 2021 The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures







Similar articles
-
Excited-state dynamics of nitrated push-pull molecules: the importance of the relative energy of the singlet and triplet manifolds.J Phys Chem A. 2009 Dec 3;113(48):13498-508. doi: 10.1021/jp905379y. J Phys Chem A. 2009. PMID: 19839627
-
Transient IR Spectroscopic Observation of Singlet and Triplet States of 2-Nitrofluorene: Revisiting the Photophysics of Nitroaromatics.J Phys Chem A. 2016 Jan 14;120(1):28-35. doi: 10.1021/acs.jpca.5b09125. Epub 2015 Dec 24. J Phys Chem A. 2016. PMID: 26669456
-
Theoretical study of the absorption and nonradiative deactivation of 1-nitronaphthalene in the low-lying singlet and triplet excited states including methanol and ethanol solvent effects.J Chem Phys. 2012 Aug 7;137(5):054307. doi: 10.1063/1.4738757. J Chem Phys. 2012. PMID: 22894348
-
Large Inverted Singlet-Triplet Energy Gaps Are Not Always Favorable for Triplet Harvesting: Vibronic Coupling Drives the (Reverse) Intersystem Crossing in Heptazine Derivatives.J Phys Chem A. 2021 Nov 25;125(46):10044-10051. doi: 10.1021/acs.jpca.1c09150. Epub 2021 Nov 10. J Phys Chem A. 2021. PMID: 34756038
-
Reverse intersystem crossing from upper triplet levels to excited singlet: a 'hot excition' path for organic light-emitting diodes.Philos Trans A Math Phys Eng Sci. 2015 Jun 28;373(2044):20140318. doi: 10.1098/rsta.2014.0318. Philos Trans A Math Phys Eng Sci. 2015. PMID: 25987570 Free PMC article. Review.
Cited by
-
A 3D nanoscale optical disk memory with petabit capacity.Nature. 2024 Feb;626(8000):772-778. doi: 10.1038/s41586-023-06980-y. Epub 2024 Feb 21. Nature. 2024. PMID: 38383625
-
Two- and three-photon processes during photopolymerization in 3D laser printing.Chem Sci. 2024 Jul 15;15(32):12695-709. doi: 10.1039/d4sc03527e. Online ahead of print. Chem Sci. 2024. PMID: 39129779 Free PMC article.
-
STED-Inspired Cationic Photoinhibition Lithography.J Phys Chem C Nanomater Interfaces. 2023 Sep 7;127(37):18736-18744. doi: 10.1021/acs.jpcc.3c04394. eCollection 2023 Sep 21. J Phys Chem C Nanomater Interfaces. 2023. PMID: 37752901 Free PMC article.
-
Stimulated Emission Depletion Inspired Sub-100 nm Structuring of Epoxides Using 2-Chlorothioxanthone as Photosensitizer.ACS Omega. 2024 Apr 18;9(17):19203-19208. doi: 10.1021/acsomega.4c00031. eCollection 2024 Apr 30. ACS Omega. 2024. PMID: 38708223 Free PMC article.
-
Low-Fluorescence Starter for Optical 3D Lithography of Sub-40 nm Structures.ACS Appl Opt Mater. 2023 May 12;1(5):945-951. doi: 10.1021/acsaom.3c00031. eCollection 2023 May 26. ACS Appl Opt Mater. 2023. PMID: 37255503 Free PMC article.
References
-
- Abdullah K.A., Kemp T.J. Solvatochromic effects in the fluorescence and triplet—triplet absorption spectra of xanthone, thioxanthone and N-methylacridone. J. Photochem. 1986;32:49–57. doi: 10.1016/0047-2670(86)85006-7. - DOI
-
- Allonas X., Ley C., Bibaut C., Jacques P., Fouassier J.P. Investigation of the triplet quantum yield of thioxanthone by time-resolved thermal lens spectroscopy: solvent and population lens effects. Chem. Phys. Lett. 2000;322:483–490. doi: 10.1016/s0009-2614(00)00462-0. - DOI
-
- Amirzadeh G., Schnabel W. On the photoinitiation of free radical polymerization-laser flash photolysis investigations on thioxanthone derivatives. Macromol.Chem. Phys. 1981;182:2821–2835. doi: 10.1002/macp.1981.021821027. - DOI
-
- Andrzejewska E., Zych-Tomkowiak D., Andrzejewski M., Hug G.L., Marciniak B. Heteroaromatic thiols as co-initiators for type II photoinitiating systems based on camphorquinone and isopropylthioxanthone. Macromolecules. 2006;39:3777–3785. doi: 10.1021/ma060240k. - DOI
LinkOut - more resources
Full Text Sources