Origin of Ferroelectricity in Two Prototypical Hybrid Organic-Inorganic Perovskites
- PMID: 35005965
- DOI: 10.1021/jacs.1c10188
Origin of Ferroelectricity in Two Prototypical Hybrid Organic-Inorganic Perovskites
Abstract
Hybrid organic-inorganic perovskite (HOIP) ferroelectrics are attracting considerable interest because of their high performance, ease of synthesis, and lightweight. However, the intrinsic thermodynamic origins of their ferroelectric transitions remain insufficiently understood. Here, we identify the nature of the ferroelectric phase transitions in displacive [(CH3)2NH2][Mn(N3)3] and order-disorder type [(CH3)2NH2][Mn(HCOO)3] via spatially resolved structural analysis and ab initio lattice dynamics calculations. Our results demonstrate that the vibrational entropy change of the extended perovskite lattice drives the ferroelectric transition in the former and also contributes importantly to that of the latter along with the rotational entropy change of the A-site. This finding not only reveals the delicate atomic dynamics in ferroelectric HOIPs but also highlights that both the local and extended fluctuation of the hybrid perovskite lattice can be manipulated for creating ferroelectricity by taking advantages of their abundant atomic, electronic, and phononic degrees of freedom.
Similar articles
-
An Unusual Phase Transition Driven by Vibrational Entropy Changes in a Hybrid Organic-Inorganic Perovskite.Angew Chem Int Ed Engl. 2018 Jul 16;57(29):8932-8936. doi: 10.1002/anie.201803176. Epub 2018 Jun 20. Angew Chem Int Ed Engl. 2018. PMID: 29845741
-
Elastic Properties and Energy Loss Related to the Disorder-Order Ferroelectric Transitions in Multiferroic Metal-Organic Frameworks [NH4][Mg(HCOO)3] and [(CH3)2NH2][Mg(HCOO)3].Materials (Basel). 2021 Jun 7;14(11):3125. doi: 10.3390/ma14113125. Materials (Basel). 2021. PMID: 34200272 Free PMC article.
-
Cooperative Nature of Ferroelectricity in Two-Dimensional Hybrid Organic-Inorganic Perovskites.Nano Lett. 2021 Apr 14;21(7):3170-3176. doi: 10.1021/acs.nanolett.1c00395. Epub 2021 Mar 23. Nano Lett. 2021. PMID: 33754732
-
Chemical design of a new displacive-type ferroelectric.Dalton Trans. 2022 Feb 14;51(7):2610-2630. doi: 10.1039/d1dt03693a. Dalton Trans. 2022. PMID: 35076649 Review.
-
Ferroelectricity in Hybrid Perovskites.J Phys Chem Lett. 2023 Apr 13;14(14):3535-3552. doi: 10.1021/acs.jpclett.3c00566. Epub 2023 Apr 5. J Phys Chem Lett. 2023. PMID: 37017277 Review.
Cited by
-
Ferroelectric hybrid organic-inorganic perovskites and their structural and functional diversity.Natl Sci Rev. 2022 Nov 2;10(2):nwac240. doi: 10.1093/nsr/nwac240. eCollection 2023 Feb. Natl Sci Rev. 2022. PMID: 36817836 Free PMC article. Review.
-
Biferroelectricity of a homochiral organic molecule in both solid crystal and liquid crystal phases.Nat Commun. 2022 Oct 18;13(1):6150. doi: 10.1038/s41467-022-33925-2. Nat Commun. 2022. PMID: 36258026 Free PMC article.
-
Temperature-Responsive Photoluminescence and Elastic Properties of 1D Lead Halide Perovskites R- and S-(Methylbenzylamine)PbBr3.Molecules. 2022 Jan 23;27(3):728. doi: 10.3390/molecules27030728. Molecules. 2022. PMID: 35163993 Free PMC article.
-
High-T c Single-Component Organosilicon Ferroelectric Crystal Obtained by H/F Substitution.JACS Au. 2023 Feb 12;3(2):603-609. doi: 10.1021/jacsau.3c00004. eCollection 2023 Feb 27. JACS Au. 2023. PMID: 36873683 Free PMC article.
-
Stepwise Crystalline Structural Transformation in 0D Hybrid Antimony Halides with Triplet Turn-on and Color-Adjustable Luminescence Switching.Research (Wash D C). 2023;6:0094. doi: 10.34133/research.0094. Epub 2023 Mar 30. Research (Wash D C). 2023. PMID: 37011242 Free PMC article.
LinkOut - more resources
Full Text Sources