Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov 15;4(11):7979-7992.
doi: 10.1021/acsabm.1c00890. Epub 2021 Nov 3.

Polyethylenimine-Functionalized Carbon Dots for Delivery of CRISPR/Cas9 Complexes

Affiliations

Polyethylenimine-Functionalized Carbon Dots for Delivery of CRISPR/Cas9 Complexes

Iman Hashemzadeh et al. ACS Appl Bio Mater. .

Abstract

Carbon dots (CDs) have become the focus of many studies due to their outstanding optical properties and good biocompatibility. We investigated their potential application to produce a smart and highly efficient yet nontoxic nanovector for gene delivery. This was achieved by conjugating PEI1.8k-functionalized CDs (synthesized by one-step microwave-assisted pyrolysis) with arginine-disulfide linkers to produce CD-PEI1.8k-Arg nanoparticles. This nanovector could deliver p-CRISPR (9.3 kb) into different types of cell lines with higher efficiency compared to native PEI1.8k or PEI25k. CD-PEI1.8k-Arg also maintained its outstanding transfection efficiency at a high serum concentration and low p-CRISPR dose, compared to PEI25k, which was ineffective under those conditions. Additionally, CD-PEI1.8k-Arg could knock out the GFP gene with great efficiency by delivering the required components of CRISPR/Cas9, including a plasmid encoding Cas9, sgRNA targeting GFP, and Cas9/sgRNA ribonucleoproteins (RNPs) into the HEK 293T-GFP cells. Moreover, the nanoparticles showed potential for the local delivery of p-CRISPR into brain tissue. The remarkable properties of CD-PEI1.8k-Arg could enable the development of a safe, highly efficient gene-delivery nanovector for the treatment of various diseases in the near future.

Keywords: CRISPR; brain delivery; carbon dots; gene delivery; smart nanoparticles.

PubMed Disclaimer

Publication types

LinkOut - more resources