Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Dec 29;11(1):160.
doi: 10.3390/jcm11010160.

Overview of the Development and Use of Akt Inhibitors in Prostate Cancer

Affiliations
Review

Overview of the Development and Use of Akt Inhibitors in Prostate Cancer

Anis Gasmi et al. J Clin Med. .

Abstract

Deregulation of the PI3K-Akt-mTOR pathway plays a critical role in the development and progression of many cancers. In prostate cancer, evidence suggests that it is mainly driven by PTEN loss of function. For many years, the development of selective Akt inhibitors has been challenging. In recent phase II and III clinical trials, Ipatasertib and Capivasertib associated with androgen deprivation therapies showed promising outcomes in patients with metastatic castration-resistant prostate cancer and PTEN-loss. Ongoing trials are currently assessing several Akt inhibitors in prostate cancer with different combinations, at different stages of the disease.

Keywords: Akt; Capivasertib; Ipatasertib; PTEN; castration resistance; prostate cancer.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Overview of the PI3K-Akt-mTOR pathway.

References

    1. Arcaro A., Guerreiro A.S. The phosphoinositide 3-kinase pathway in human cancer: Genetic alterations and therapeutic implications. Curr. Genom. 2007;8:271–306. doi: 10.2174/138920207782446160. - DOI - PMC - PubMed
    1. Carnero A. The PKB/AKT pathway in cancer. Curr. Pharm. Des. 2010;16:34–44. doi: 10.2174/138161210789941865. - DOI - PubMed
    1. Altomare D.A., Testa J.R. Perturbations of the AKT signaling pathway in human cancer. Oncogene. 2005;24:7455–7464. doi: 10.1038/sj.onc.1209085. - DOI - PubMed
    1. Song G., Ouyang G., Bao S. The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med. 2005;9:59–71. doi: 10.1111/j.1582-4934.2005.tb00337.x. - DOI - PMC - PubMed
    1. Guo H., German P., Bai S., Barnes S., Guo W., Qi X., Lou H., Liang J., Jonasch E., Mills G.B., et al. The PI3K/AKT Pathway and Renal Cell Carcinoma. J. Genet. Genom. 2015;42:343–353. doi: 10.1016/j.jgg.2015.03.003. - DOI - PMC - PubMed