Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan 18;4(1):325-369.
doi: 10.1021/acsabm.0c01379. Epub 2020 Dec 21.

Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges

Affiliations
Free article

Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges

Mahdiyar Shahbazi et al. ACS Appl Bio Mater. .
Free article

Abstract

Three-dimensional (3D) printing is a revolutionary additive manufacturing technique that allows rapid prototyping of objects with intricate architectures. This Review covers the recent state-of-the-art of biopolymers (protein and carbohydrate-based materials) application in pharmaceutical, bioengineering, and food printing and main reinforcement approaches of biomacromolecular structure for the development of 3D constructs. Some perspectives and main important limitations with the biomaterials utilization for advanced 3D printing procedures are also provided. Because of the improved the ink's flow behavior and enhance the mechanical strength of resulting printed architectures, biopolymers are the most used materials for 3D printing applications. Biobased polymers by taking advantage of modifying the ink viscosity could improve the resolution of deposited layers, printing precision, and consequently, develop well-defined geometries. In this regard, the rheological properties of printable biopolymeric-based inks and factors affecting ink flow behavior related to structural properties of printed constructs are discussed. On the basis of successful applications of biopolymers in 3D printing, it is suggested that other biomacromolecules and nanoparticles combined with the matrix can be introduced into the ink dispersions to enhance the multifunctionality of 3D structures. Furthermore, tuning the biopolymer's structural properties offers the most common and essential approach to attain the printed architectures with precisely tailored geometry. We finish the Review by giving a viewpoint of the upcoming 3D printing process and recognize some of the existing bottlenecks facing the blossoming 3D pharmaceutical, bioengineering, and food printing applications.

Keywords: additive manufacturing; bioengineering; biomaterials; chemical cross-linking; food printing; printability; rheological properties; shape fidelity.

PubMed Disclaimer

Publication types

LinkOut - more resources