Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan 12;13(1):10.
doi: 10.1186/s40104-021-00655-2.

Supplementation of oligosaccharide-based polymer enhanced growth and disease resistance of weaned pigs by modulating intestinal integrity and systemic immunity

Affiliations

Supplementation of oligosaccharide-based polymer enhanced growth and disease resistance of weaned pigs by modulating intestinal integrity and systemic immunity

Kwangwook Kim et al. J Anim Sci Biotechnol. .

Abstract

Background: There is a great demand for antibiotic alternatives to maintain animal health and productivity. The objective of this experiment was to determine the efficacy of dietary supplementation of a blood group A6 type 1 antigen oligosaccharides-based polymer (Coligo) on growth performance, diarrhea severity, intestinal health, and systemic immunity of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli (ETEC), when compared with antibiotics.

Results: Pigs in antibiotic carbadox or Coligo treatment groups had greater (P < 0.05) body weight on d 5 or d 11 post-inoculation (PI) than pigs in the control group, respectively. Supplementation of antibiotics or Coligo enhanced (P < 0.05) feed efficiency from d 0 to 5 PI and reduced (P < 0.05) frequency of diarrhea throughout the experiment, compared with pigs in the control group. Supplementation of antibiotics reduced (P < 0.05) fecal β-hemolytic coliforms on d 2, 5, and 8 PI. Pigs in antibiotics or Coligo groups had reduced (P < 0.05) neutrophil counts and serum haptoglobin concentration compared to pigs in the control group on d 2 and 5 PI. Pigs in Coligo had reduced (P < 0.05) total coliforms in mesenteric lymph nodes on d 5 and 11 PI, whereas pigs in antibiotics or Coligo groups had reduced (P < 0.05) total coliforms in spleen on d 11 PI compared with pigs in the control group. On d 5 PI, pigs in the Coligo group had greater (P < 0.05) gene expression of ZO1 in jejunal mucosa, but less (P < 0.05) mRNA expression of IL1B, IL6, and TNF in ileal mucosa, in comparison with pigs in the control group. Supplementation of antibiotics enhanced (P < 0.05) the gene expression of OCLN in jejunal mucosa but decreased (P < 0.05) IL1B and IL6 gene expression in ileal mucosa, compared with the control. On d 11 PI, supplementation of antibiotics or Coligo up-regulated (P < 0.05) gene expression of CLDN1 in jejunal mucosa, but Coligo reduced (P < 0.05) IL6 gene expression in ileal mucosa compared to pigs in the control group.

Conclusions: Supplementation of Coligo improved growth performance, alleviated diarrhea severity, and enhanced gut health in weaned pigs infected with ETEC F18 in a manner similar to in-feed antibiotics.

Keywords: Enterotoxigenic E. coli; Growth rate; Intestinal barrier function; Oligosaccharide-based polymer; Systemic immunity; Weaned pigs.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Daily diarrhea score of ETEC-infected weaned pigs fed diets supplemented with oligosaccharide-based polymer (Coligo) or antibiotics. Diarrhea score = 1, normal feces, 2, moist feces, 3, mild diarrhea, 4, severe diarrhea, 5, watery diarrhea. Each least squares mean from d 0 to d 5 post-inoculation (PI) represents 12 observations. Each least squares mean from d 6 to d 11 PI represents 6 observations. *Significant differences were observed among dietary treatment: P < 0.05. LOW = Low dose blood group A6 type 1-based polymer (Coligo); HIGH = High dose blood group A6 type 1-based polymer (Coligo); CAR = Carbadox
Fig. 2
Fig. 2
The percentage (%) of β-hemolytic coliform in fecal samples of ETEC-infected pigs fed diets supplemented with oligosaccharide-based polymer (Coligo) or antibiotics. Each least squares mean from d 0 to d 5 post-inoculation (PI) represents 12 observations. Each least squares mean from d 6 to d 11 PI represents 6 observations. a,bMeans without a common superscript differ (P < 0.05). LOW = Low dose blood group A6 type 1-based polymer (Coligo); HIGH = High dose blood group A6 type 1-based polymer (Coligo); CAR = Carbadox
Fig. 3
Fig. 3
Bacterial counts (CFU/g) in lymph node and spleen of ETEC-infected weaned pigs fed diets supplemented with oligosaccharide-based polymer (Coligo) or antibiotics. Each least squares mean from d 0 to d 5 post-inoculation (PI) represents 12 observations. Each least squares mean from d 6 to d 11 PI represents 6 observations. a,bMeans without a common superscript differ (P < 0.05). LOW = Low dose blood group A6 type 1-based polymer (Coligo); HIGH = High dose blood group A6 type 1-based polymer (Coligo); CAR = Carbadox
Fig. 4
Fig. 4
Gene expression profiles in jejunal mucosa of ETEC-infected weaned pigs fed diets supplemented with oligosaccharide-based polymer (Coligo) or antibiotics on d 5 or 11 post-inoculation (PI). a,bMeans without a common superscript differ (P < 0.05). Each least squares mean represents 6 observations. LOW = Low dose blood group A6 type 1-based polymer (Coligo); HIGH = High dose blood group A6 type 1-based polymer (Coligo); CAR = Carbadox; MUC2 = Mucin-2; CLDN1 = Claudin-1; ZO-1 = Zonula occludens-1; OCDN = Occludin
Fig. 5
Fig. 5
Gene expression profiles in ileal mucosa of ETEC-infected weaned pigs fed diets supplemented with oligosaccharide-based polymer (Coligo) or antibiotics on d 5 or 11 post-inoculation (PI). a,bMeans without a common superscript differ (P < 0.05). Each least squares mean represents 6 observations. LOW = Low dose blood group A6 type 1-based polymer (Coligo); HIGH = High dose blood group A6 type 1-based polymer (Coligo); CAR = Carbadox; IL1B: Interleukin-1 beta; IL6: Interleukin-6; TNF = Tumor necrosis factor; PTGS2: Cyclooxygenase-2

References

    1. Nagy B, Fekete PZ. Enterotoxigenic Escherichia coli in veterinary medicine. Int J Med Microbiol. 2005;295(6-7):443–454. doi: 10.1016/j.ijmm.2005.07.003. - DOI - PubMed
    1. Fairbrother JM, Nadeau É, Gyles CL. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev. 2005;6(1):17–39. doi: 10.1079/AHR2005105. - DOI - PubMed
    1. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci. 2015;112(18):5649–5654. doi: 10.1073/pnas.1503141112. - DOI - PMC - PubMed
    1. FDA (Food and Drug Administration) New animal drugs and new animal drug combination products administered in or on medicated feed or drinking water of food-producing animals: recommendations for drug sponsors for voluntarily aligning product use conditions with FDA Guidance for Industry #213. Center for Veterinary Medicine. Washington, DC: US Department of Health and Human Services; 2016. https://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforce...
    1. Nollet H, Deprez P, Van Driessche E, Muylle E. Protection of just weaned pigs against infection with F18+ Escherichia coli by non-immune plasma powder. Vet Microbiol. 1999;65(1):37–45. doi: 10.1016/S0378-1135(98)00282-X. - DOI - PubMed