Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2022 Mar:101:108946.
doi: 10.1016/j.jnutbio.2022.108946. Epub 2022 Jan 10.

Raspberry consumption: identification of distinct immune-metabolic response profiles by whole blood transcriptome profiling

Affiliations
Free article
Randomized Controlled Trial

Raspberry consumption: identification of distinct immune-metabolic response profiles by whole blood transcriptome profiling

Maximilien Franck et al. J Nutr Biochem. 2022 Mar.
Free article

Erratum in

Abstract

Numerous studies have reported that diets rich in phenolic compounds are beneficial to immune-metabolic health, yet these effects are heterogeneous and the underlying mechanisms are poorly understood. To investigate the inter-individual variability of the immune-metabolic response to raspberry consumption, whole-blood RNAseq data from 24 participants receiving 280 g/d of raspberries for 8 weeks were used for the identification of responsiveness subgroups by using partial least squares-discriminant analysis (PLSDA) and hierarchical clustering. Transcriptomic-based clustering regrouped participants into two distinct subgroups of 13 and 11 participants, so-called responders and non-responders, respectively. Following raspberry consumption, a significant decrease in triglycerides, cholesterol and C-reactive protein levels were found in responders, as compared to non-responders. Two major gene expression components of 100 and 220 genes were identified by sparse PLSDA as those better discriminating responders from non-responders, and functional analysis identified pathways related to cytokine production, leukocyte activation and immune response as significantly enriched with most discriminant genes. As compared to non-responders, the plasma lipidomic profile of responders was characterized by a significant decrease in triglycerides and an increase in phosphatidylcholines following raspberry consumption. Prior to the intervention, a distinct metagenomic profile was identified by PLSDA between responsiveness subgroups, and the Firmicutes-to-Bacteroidota ratio was found significantly lower in responders, as compared to non-responders. Findings point to this transcriptomic-based clustering approach as a suitable tool to identify distinct responsiveness subgroups to raspberry consumption. This approach represents a promising framework to tackle the issue of inter-individual variability in the understanding of the impact of foods on immune-metabolic health.

Trial registration: ClinicalTrials.gov NCT03620617.

Keywords: Gene expression; Gut microbiota; Immunity; Multi-omics; Raspberry; Transcriptomic-based clustering.

PubMed Disclaimer

Publication types

Associated data