Versatility of subtilisin: A review on structure, characteristics, and applications
- PMID: 35019178
- DOI: 10.1002/bab.2309
Versatility of subtilisin: A review on structure, characteristics, and applications
Abstract
Due to its thermostability and high pH compatibility, subtilisin is most known for its role as an additive for detergents in which it is categorized as a serine protease according to MEROPS database. Subtilisin is typically isolated from various bacterial species of the Bacillus genus such as Bacillus subtilis, B. amyloliquefaciens, B. licheniformis, and various other organisms. It is composed of 268-275 amino acid residues and is initially secreted in the precursor form, preprosubtilisin, which is composed of 29-residues signal peptide, 77-residues propeptide, and 275-residues active subtilisin. Subtilisin is known for the presence of high and low affinity calcium binding sites in its structure. Native subtilisin has general properties of thermostability, tolerance to neutral to high pH, broad specificity, and calcium-dependent stability, which contribute to the versatility of subtilisin applicability. Through protein engineering and immobilization technologies, many variants of subtilisin have been generated, which increase the applicability of subtilisin in various industries including detergent, food processing and packaging, synthesis of inhibitory peptides, therapeutic, and waste management applications.
Keywords: MEROPS database; applications; protein engineering; serine protease; subtilisin.
© 2022 International Union of Biochemistry and Molecular Biology, Inc.
Similar articles
-
Homology modeling and heterologous expression of highly alkaline subtilisin-like serine protease from Bacillus halodurans C-125.Biotechnol Lett. 2021 Feb;43(2):479-494. doi: 10.1007/s10529-020-03025-6. Epub 2020 Oct 12. Biotechnol Lett. 2021. PMID: 33047274
-
Cloning and expression of a fibrinolytic enzyme (subtilisin DFE) gene from Bacillus amyloliquefaciens DC-4 in Bacillus subtilis.Res Microbiol. 2004 Apr;155(3):167-73. doi: 10.1016/j.resmic.2003.10.004. Res Microbiol. 2004. PMID: 15059629
-
Secretion and autoproteolytic maturation of subtilisin.Proc Natl Acad Sci U S A. 1986 May;83(10):3096-100. doi: 10.1073/pnas.83.10.3096. Proc Natl Acad Sci U S A. 1986. PMID: 3517850 Free PMC article.
-
Bacterial alkaline proteases: molecular approaches and industrial applications.Appl Microbiol Biotechnol. 2002 Jun;59(1):15-32. doi: 10.1007/s00253-002-0975-y. Epub 2002 Apr 20. Appl Microbiol Biotechnol. 2002. PMID: 12073127 Review.
-
Advances in protease engineering for laundry detergents.N Biotechnol. 2015 Dec 25;32(6):629-34. doi: 10.1016/j.nbt.2014.12.010. Epub 2015 Jan 8. N Biotechnol. 2015. PMID: 25579194 Review.
Cited by
-
New robust subtilisins from halotolerant and halophilic Bacillaceae.Appl Microbiol Biotechnol. 2023 Jun;107(12):3939-3954. doi: 10.1007/s00253-023-12553-w. Epub 2023 May 9. Appl Microbiol Biotechnol. 2023. PMID: 37160606 Free PMC article.
-
Redox and solvent-stable alkaline serine protease from Bacillus patagoniensis DB-5: heterologous expression, properties, and biotechnological applications.Front Microbiol. 2025 Mar 19;16:1558419. doi: 10.3389/fmicb.2025.1558419. eCollection 2025. Front Microbiol. 2025. PMID: 40190736 Free PMC article.
-
High selectivity of the hyperthermophilic subtilase propeptide domain toward inhibition of its cognate protease.Microbiol Spectr. 2023 Sep 1;11(5):e0148723. doi: 10.1128/spectrum.01487-23. Online ahead of print. Microbiol Spectr. 2023. PMID: 37655909 Free PMC article.
-
Subtilisin integrated artificial plant cell walls as heterogeneous catalysts for asymmetric synthesis of (S)-amides.RSC Adv. 2023 Jul 3;13(29):19975-19980. doi: 10.1039/d3ra02193a. eCollection 2023 Jun 29. RSC Adv. 2023. PMID: 37404321 Free PMC article.
-
Optimization of subtilisin production from Bacillus subtilis strain ZK3 and biological and molecular characterization of synthesized subtilisin capped nanoparticles.Saudi J Biol Sci. 2023 Nov;30(11):103807. doi: 10.1016/j.sjbs.2023.103807. Epub 2023 Sep 6. Saudi J Biol Sci. 2023. PMID: 37744003 Free PMC article.
References
REFERENCES
-
- Rozanov AS, Shekhovtsov SV, Bogacheva NV, Pershina EG, Ryapolova AV, Bytyak DS, et al. Production of subtilisin proteases in bacteria and yeast. Vavilovskii Zhurnal Genetiki i Selektsii. 2021;25:125-34. https://doi.org/10.18699/VJ21.015.
-
- Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:D624-32. https://doi.org/10.1093/nar/gkx1134.
-
- Mótyán J, Tóth F, Tözsér J, Research applications of proteolytic enzymes in molecular biology. Biomolecules. 2013;3:923-42. https://doi.org/10.3390/biom3040923.
-
- Sakamoto Y, Suzuki Y, Iizuka I, Tateoka C, Roppongi S, Fujimoto M, et al. S46 peptidases are the first exopeptidases to be members of clan PA. Sci Rep. 2014;4:1-12. https://doi.org/10.1038/srep04977.
-
- Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G, Protease propeptide structures, mechanisms of activation, and functions. Crit Rev Biochem Mol Biol. 2020;55:111-65. https://doi.org/10.1080/10409238.2020.1742090.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases