Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 16;2(9):3954-3963.
doi: 10.1021/acsabm.9b00526. Epub 2019 Aug 15.

Nonlinear Magnetochemical Effects in Nanotherapy of Walker-256 Carcinosarcoma

Affiliations

Nonlinear Magnetochemical Effects in Nanotherapy of Walker-256 Carcinosarcoma

Valerii E Orel et al. ACS Appl Bio Mater. .

Abstract

The biological and medical aspects of magnetochemical effects in nanotherapy of tumors remain poorly studied. The present paper investigates the influence of nonlinear magnetochemical effects of anisotropic magnetic nanodots on an animal tumor model. The magnetic properties and electron spin resonance spectra of magnetic nanodots and doxorubicin were investigated after mechano-magnetochemical synthesis. The results obtained from the analysis of nonlinear kinetics and survival in Walker-256 carcinosarcoma-bearing animals found a nonlinear dependence between the value of the growth factor, braking ratio, survival rate, tumor redox state, and the treatment by the magnetic nanodot combined with a nonuniform constant magnetic field. To quantify the heterogeneity in microphotographs of Walker-256 carcinosarcoma sections, we applied the entropy parameter. The control (no treatment) group showed the greatest heterogeneity. The lowest value of tumor heterogeneity among animals given treatment was found in groups with the minimum growth factor. Similarly, the lowest entropy value was found in muscle tissue taken from inoculation areas of the tumor. The evidence from this study concluded that inhomogeneous constant magnetic fields with different strength applied to heterogeneous tumor tissues induced different magnetic anisotropy in the magnetic nanodot which had a significant influence on the nonlinear kinetics, redox state, and histological pattern of the tumor.

Keywords: cancer; inhomogeneous magnetic field; magnetochemistry; oxidative stress; tumor heterogeneity.

PubMed Disclaimer