Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan;601(7892):217-222.
doi: 10.1038/s41586-021-04209-4. Epub 2022 Jan 12.

Elastomeric electrolytes for high-energy solid-state lithium batteries

Affiliations

Elastomeric electrolytes for high-energy solid-state lithium batteries

Michael J Lee et al. Nature. 2022 Jan.

Erratum in

Abstract

The use of lithium metal anodes in solid-state batteries has emerged as one of the most promising technologies for replacing conventional lithium-ion batteries1,2. Solid-state electrolytes are a key enabling technology for the safe operation of lithium metal batteries as they suppress the uncontrolled growth of lithium dendrites. However, the mechanical properties and electrochemical performance of current solid-state electrolytes do not meet the requirements for practical applications of lithium metal batteries. Here we report a class of elastomeric solid-state electrolytes with a three-dimensional interconnected plastic crystal phase. The elastomeric electrolytes show a combination of mechanical robustness, high ionic conductivity, low interfacial resistance and high lithium-ion transference number. The in situ-formed elastomer electrolyte on copper foils accommodates volume changes for prolonged lithium plating and stripping processes with a Coulombic efficiency of 100.0 per cent. Moreover, the elastomer electrolytes enable stable operation of the full cells under constrained conditions of a limited lithium source, a thin electrolyte and a high-loading LiNi0.83Mn0.06Co0.11O2 cathode at a high voltage of 4.5 volts at ambient temperature, delivering a high specific energy exceeding 410 watt-hours per kilogram of electrode plus electrolyte. The elastomeric electrolyte system presents a powerful strategy for enabling stable operation of high-energy, solid-state lithium batteries.

PubMed Disclaimer

References

    1. Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008). - PubMed - DOI
    1. Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016). - DOI
    1. Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016). - DOI
    1. Lin, D. C., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). - PubMed - DOI
    1. Wan, J. Y. et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019). - PubMed - DOI

Publication types

LinkOut - more resources