Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan;601(7892):201-204.
doi: 10.1038/s41586-021-04155-1. Epub 2022 Jan 12.

A WC/WO star exploding within an expanding carbon-oxygen-neon nebula

Affiliations

A WC/WO star exploding within an expanding carbon-oxygen-neon nebula

A Gal-Yam et al. Nature. 2022 Jan.

Abstract

The final fate of massive stars, and the nature of the compact remnants they leave behind (black holes and neutron stars), are open questions in astrophysics. Many massive stars are stripped of their outer hydrogen envelopes as they evolve. Such Wolf-Rayet stars1 emit strong and rapidly expanding winds with speeds greater than 1,000 kilometres per second. A fraction of this population is also helium-depleted, with spectra dominated by highly ionized emission lines of carbon and oxygen (types WC/WO). Evidence indicates that the most commonly observed supernova explosions that lack hydrogen and helium (types Ib/Ic) cannot result from massive WC/WO stars2,3, leading some to suggest that most such stars collapse directly into black holes without a visible supernova explosion4. Here we report observations of SN 2019hgp, beginning about a day after the explosion. Its short rise time and rapid decline place it among an emerging population of rapidly evolving transients5-8. Spectroscopy reveals a rich set of emission lines indicating that the explosion occurred within a nebula composed of carbon, oxygen and neon. Narrow absorption features show that this material is expanding at high velocities (greater than 1,500 kilometres per second), requiring a compact progenitor. Our observations are consistent with an explosion of a massive WC/WO star, and suggest that massive Wolf-Rayet stars may be the progenitors of some rapidly evolving transients.

PubMed Disclaimer

References

    1. Nature. 2006 Aug 31;442(7106):1008-10 - PubMed
    1. Nature. 2013 Feb 7;494(7435):65-7 - PubMed
    1. Nature. 2007 Jun 14;447(7146):829-32 - PubMed
    1. Science. 2008 Aug 29;321(5893):1185-8 - PubMed
    1. Nature. 2014 May 22;509(7501):471-4 - PubMed

Publication types

LinkOut - more resources