Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2021:1339:65-76.
doi: 10.1007/978-3-030-78787-5_10.

Genotypic and Clinical Analysis of a Thalassemia Major Cohort: An Observational Study

Affiliations
Observational Study

Genotypic and Clinical Analysis of a Thalassemia Major Cohort: An Observational Study

Tsartsalis A et al. Adv Exp Med Biol. 2021.

Abstract

Thalassemia major (TM) is a hereditary disease caused by defective globin synthesis. Because of the significant increase in life expectancy, these patients are suffering from various health conditions, including endocrinopathies and low bone mineral density. The aim of the present study was to investigate the correlation between clinical and biochemical parameters as well as to identify possible relations in a genotype to phenotype pattern. Sixty-four patients with TM (32 men and 32 women) participated in a cross-sectional study design. The patients were recruited from "Aghia Sofia" Children's Hospital. Clinical and biochemical parameters were evaluated as well as specific mutations were identified. We have found significant correlations between biochemical parameters and iron chelation, hormone replacement treatment as well as TM genotype and hematocrit and T-score. To conclude, the current study showed that clinical parameters of TM patients correlate significantly with both biochemical factors and genotypical patient parameters. Our present study showed that there is a connection between genotype and phenotype as, for example, the identified relation between hematocrit and T-scores and TM-specific mutations. This connection indicates that there is still much more to learn about the role of mutations not only in the disease itself but also in the underlying comorbidities.

Keywords: Biochemical parameters; Mutation frequency; T-score; Thalassemia.

PubMed Disclaimer

References

    1. Cousens NE et al (2010) Carrier screening for beta-thalassaemia: a review of international practice. Eur J Hum Genet 18(10):1077–1083. https://doi.org/10.1038/ejhg.2010.90 - DOI - PubMed - PMC
    1. Lee YK et al (2019) Recent progress in laboratory diagnosis of thalassemia and hemoglobinopathy: a study by the Korean Red Blood Cell Disorder Working Party of the Korean Society of Hematology. Blood Res 54(1):17–22. https://doi.org/10.5045/br.2019.54.1.17 - DOI - PubMed - PMC
    1. Goh SH et al (2005) A newly discovered human alpha-globin gene. Blood 106(4):1466–1472. https://doi.org/10.1182/blood-2005-03-0948 - DOI - PubMed - PMC
    1. Karponi G, Zogas N (2019) Gene therapy for beta-thalassemia: updated perspectives. Appl Clin Genet 12:167–180. https://doi.org/10.2147/tacg.s178546 - DOI - PubMed - PMC
    1. Weatherall DJ, Clegg JB (1999) Genetic disorders of hemoglobin. Semin Hematol 36(4 Suppl 7):24–37 - PubMed

Publication types

LinkOut - more resources