Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar:166:106566.
doi: 10.1016/j.aap.2022.106566. Epub 2022 Jan 10.

Towards human-like speed control in autonomous vehicles: A mountainous freeway case

Affiliations

Towards human-like speed control in autonomous vehicles: A mountainous freeway case

Zhigui Chen et al. Accid Anal Prev. 2022 Mar.

Abstract

A driving strategy for autonomous vehicles (AVs) that is consistent with human behavior while demonstrating superior performance seems to have a good chance to be accepted by early AV users and be successful in the long run. Most of the past research focused on motion strategies affected by the presence of other vehicles. On the other hand, AV not constrained by other vehicles must select a safe and comfortable speed that is perceived as such by its occupants. This line of research is not well covered by the published work. The baseline speed, which is the speed AVs will follow without interaction with other vehicles, implemented via cruise control (CC) in modern vehicles is a constant speed consistent with speed limits and design speeds. A more advanced strategy of road-limiting speed control (RC) responds to influencing geometric features ahead of the AV's current position. Neither of the two strategies considers AV occupants' preferences. The current void in research is particularly obvious for free-flow conditions where baseline speeds must be implemented for extended periods of travel. Although the existing strategies have not been yet evaluated on roadways with demanding alignments and operating in free-flow conditions, the principles on which they are based provide a basis for skepticism if they can be acceptable to AV occupants. This study used the Tongji University driving simulator to evaluate the CC and RC strategies and their potential limitations in free-flow conditions on a mountainous freeway with complex alignments. Human speed-selection behavior was observed among a group of participating drivers. The clustering analysis of the data revealed three distinct driving styles: slow, fast, and consistent. The resulted analytical models provided human-focused road-dependent baseline speed profiles- a key element of the proposed human-like speed control (HC) strategy. The comparison of the existing speed-control strategies CC and RC with the proposed HC confirmed the limitations of the two existing ones if applied to roads with complex alignments. Considerable discrepancies were revealed between the baseline speeds produced with the existing and the proposed ones.

Keywords: Autonomous Vehicle; Driving Simulator; Driving Style Clustering; Human-like Strategy; Speed Control.

PubMed Disclaimer

LinkOut - more resources