Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar;30(3):349-362.
doi: 10.1038/s41431-021-00987-7. Epub 2022 Jan 14.

Polygenic risk modeling for prediction of epithelial ovarian cancer risk

Eileen O Dareng #  1 Jonathan P Tyrer #  2 Daniel R Barnes  1 Michelle R Jones  3 Xin Yang  1 Katja K H Aben  4   5 Muriel A Adank  6 Simona Agata  7 Irene L Andrulis  8   9 Hoda Anton-Culver  10 Natalia N Antonenkova  11 Gerasimos Aravantinos  12 Banu K Arun  13 Annelie Augustinsson  14 Judith Balmaña  15   16 Elisa V Bandera  17 Rosa B Barkardottir  18   19 Daniel Barrowdale  1 Matthias W Beckmann  20 Alicia Beeghly-Fadiel  21 Javier Benitez  22   23 Marina Bermisheva  24 Marcus Q Bernardini  25 Line Bjorge  26   27 Amanda Black  28 Natalia V Bogdanova  11   29   30 Bernardo Bonanni  31 Ake Borg  32 James D Brenton  33 Agnieszka Budzilowska  34 Ralf Butzow  35 Saundra S Buys  36 Hui Cai  21 Maria A Caligo  37 Ian Campbell  38   39 Rikki Cannioto  40 Hayley Cassingham  41 Jenny Chang-Claude  42   43 Stephen J Chanock  44 Kexin Chen  45 Yoke-Eng Chiew  46   47 Wendy K Chung  48 Kathleen B M Claes  49 Sarah Colonna  36 GEMO Study CollaboratorsGC-HBOC Study CollaboratorsEMBRACE CollaboratorsLinda S Cook  50   51 Fergus J Couch  52 Mary B Daly  53 Fanny Dao  54 Eleanor Davies  55 Miguel de la Hoya  56 Robin de Putter  49 Joe Dennis  1 Allison DePersia  57   58 Peter Devilee  59   60 Orland Diez  61   62 Yuan Chun Ding  63 Jennifer A Doherty  64 Susan M Domchek  65 Thilo Dörk  30 Andreas du Bois  66   67 Matthias Dürst  68 Diana M Eccles  69 Heather A Eliassen  70   71 Christoph Engel  72   73 Gareth D Evans  74   75 Peter A Fasching  20   76 James M Flanagan  77 Renée T Fortner  42 Eva Machackova  78 Eitan Friedman  79   80 Patricia A Ganz  81 Judy Garber  82 Francesca Gensini  83 Graham G Giles  84   85   86 Gord Glendon  8 Andrew K Godwin  87 Marc T Goodman  88 Mark H Greene  89 Jacek Gronwald  90 OPAL Study GroupAOCS GroupEric Hahnen  91   92 Christopher A Haiman  93 Niclas Håkansson  94 Ute Hamann  95 Thomas V O Hansen  96 Holly R Harris  97   98 Mikael Hartman  99   100 Florian Heitz  66   67   101 Michelle A T Hildebrandt  102 Estrid Høgdall  103   104 Claus K Høgdall  105 John L Hopper  85 Ruea-Yea Huang  106 Chad Huff  102 Peter J Hulick  57   58 David G Huntsman  107   108   109   110 Evgeny N Imyanitov  111 KConFab InvestigatorsHEBON InvestigatorsClaudine Isaacs  112 Anna Jakubowska  90   113 Paul A James  39   114 Ramunas Janavicius  115   116 Allan Jensen  103 Oskar Th Johannsson  117 Esther M John  118   119 Michael E Jones  120 Daehee Kang  121   122   123 Beth Y Karlan  124 Anthony Karnezis  125 Linda E Kelemen  126 Elza Khusnutdinova  24   127 Lambertus A Kiemeney  4 Byoung-Gie Kim  128 Susanne K Kjaer  103   105 Ian Komenaka  129 Jolanta Kupryjanczyk  34 Allison W Kurian  118   119 Ava Kwong  130   131   132 Diether Lambrechts  133   134 Melissa C Larson  135 Conxi Lazaro  136 Nhu D Le  137 Goska Leslie  1 Jenny Lester  124 Fabienne Lesueur  138   139   140 Douglas A Levine  54   141 Lian Li  45 Jingmei Li  142 Jennifer T Loud  89 Karen H Lu  143 Jan Lubiński  90 Phuong L Mai  144 Siranoush Manoukian  145 Jeffrey R Marks  146 Rayna Kim Matsuno  147 Keitaro Matsuo  148   149 Taymaa May  25 Lesley McGuffog  1 John R McLaughlin  150 Iain A McNeish  151   152 Noura Mebirouk  138   139   140 Usha Menon  153 Austin Miller  154 Roger L Milne  84   85   86 Albina Minlikeeva  155 Francesmary Modugno  156   157 Marco Montagna  7 Kirsten B Moysich  155 Elizabeth Munro  158   159 Katherine L Nathanson  65 Susan L Neuhausen  63 Heli Nevanlinna  160 Joanne Ngeow Yuen Yie  161   162 Henriette Roed Nielsen  163 Finn C Nielsen  96 Liene Nikitina-Zake  164 Kunle Odunsi  165 Kenneth Offit  166   167 Edith Olah  168 Siel Olbrecht  169 Olufunmilayo I Olopade  170 Sara H Olson  171 Håkan Olsson  14 Ana Osorio  23   172 Laura Papi  83 Sue K Park  121   122   123 Michael T Parsons  173 Harsha Pathak  87 Inge Sokilde Pedersen  174   175   176 Ana Peixoto  177 Tanja Pejovic  158   159 Pedro Perez-Segura  56 Jennifer B Permuth  178 Beth Peshkin  112 Paolo Peterlongo  179 Anna Piskorz  33 Darya Prokofyeva  180 Paolo Radice  181 Johanna Rantala  182 Marjorie J Riggan  183 Harvey A Risch  184 Cristina Rodriguez-Antona  22   23 Eric Ross  185 Mary Anne Rossing  97   98 Ingo Runnebaum  68 Dale P Sandler  186 Marta Santamariña  172   187   188 Penny Soucy  189 Rita K Schmutzler  91   92   190 V Wendy Setiawan  93 Kang Shan  191 Weiva Sieh  192   193 Jacques Simard  194 Christian F Singer  195 Anna P Sokolenko  111 Honglin Song  196 Melissa C Southey  84   86   197 Helen Steed  198 Dominique Stoppa-Lyonnet  199   200   201 Rebecca Sutphen  202 Anthony J Swerdlow  120   203 Yen Yen Tan  195 Manuel R Teixeira  177   204 Soo Hwang Teo  205   206 Kathryn L Terry  70   207 Mary Beth Terry  208 OCAC ConsortiumCIMBA ConsortiumMads Thomassen  163 Pamela J Thompson  88 Liv Cecilie Vestrheim Thomsen  26   27 Darcy L Thull  209 Marc Tischkowitz  210   211 Linda Titus  212 Amanda E Toland  213 Diana Torres  95   214 Britton Trabert  28 Ruth Travis  215 Nadine Tung  216 Shelley S Tworoger  70   178 Ellen Valen  26   27 Anne M van Altena  4 Annemieke H van der Hout  217 Els Van Nieuwenhuysen  169 Elizabeth J van Rensburg  218 Ana Vega  172   219   220 Digna Velez Edwards  221 Robert A Vierkant  135 Frances Wang  222   223 Barbara Wappenschmidt  91   92 Penelope M Webb  224 Clarice R Weinberg  225 Jeffrey N Weitzel  226 Nicolas Wentzensen  28 Emily White  98   227 Alice S Whittemore  118   228 Stacey J Winham  135 Alicja Wolk  94   229 Yin-Ling Woo  230 Anna H Wu  93 Li Yan  231 Drakoulis Yannoukakos  232 Katia M Zavaglia  37 Wei Zheng  21 Argyrios Ziogas  10 Kristin K Zorn  144 Zdenek Kleibl  233 Douglas Easton  1   2 Kate Lawrenson  3   234 Anna DeFazio  46   47 Thomas A Sellers  235 Susan J Ramus  236   237 Celeste L Pearce  238   239 Alvaro N Monteiro  178 Julie Cunningham  240 Ellen L Goode  240 Joellen M Schildkraut  241 Andrew Berchuck  183 Georgia Chenevix-Trench  173 Simon A Gayther  3 Antonis C Antoniou  1 Paul D P Pharoah  242   243
Collaborators, Affiliations

Polygenic risk modeling for prediction of epithelial ovarian cancer risk

Eileen O Dareng et al. Eur J Hum Genet. 2022 Mar.

Erratum in

  • Correction: Polygenic risk modeling for prediction of epithelial ovarian cancer risk.
    Dareng EO, Tyrer JP, Barnes DR, Jones MR, Yang X, Aben KKH, Adank MA, Agata S, Andrulis IL, Anton-Culver H, Antonenkova NN, Aravantinos G, Arun BK, Augustinsson A, Balmaña J, Bandera EV, Barkardottir RB, Barrowdale D, Beckmann MW, Beeghly-Fadiel A, Benitez J, Bermisheva M, Bernardini MQ, Bjorge L, Black A, Bogdanova NV, Bonanni B, Borg A, Brenton JD, Budzilowska A, Butzow R, Buys SS, Cai H, Caligo MA, Campbell I, Cannioto R, Cassingham H, Chang-Claude J, Chanock SJ, Chen K, Chiew YE, Chung WK, Claes KBM, Colonna S; GEMO Study Collaborators; GC-HBOC Study Collaborators; EMBRACE Collaborators; Cook LS, Couch FJ, Daly MB, Dao F, Davies E, de la Hoya M, de Putter R, Dennis J, DePersia A, Devilee P, Diez O, Ding YC, Doherty JA, Domchek SM, Dörk T, du Bois A, Dürst M, Eccles DM, Eliassen HA, Engel C, Evans GD, Fasching PA, Flanagan JM, Fortner RT, Machackova E, Friedman E, Ganz PA, Garber J, Gensini F, Giles GG, Glendon G, Godwin AK, Goodman MT, Greene MH, Gronwald J; OPAL Study Group; AOCS Group; Hahnen E, Haiman CA, Håkansson N, Hamann U, Hansen TVO, Harris HR, Hartman M, Heitz F, Hildebrandt MAT, Høgdall E, Høgdall CK, Hopper JL, Huang RY, Huff C, Hulick PJ, Huntsman DG, Imyanitov EN… See abstract for full author list ➔ Dareng EO, et al. Eur J Hum Genet. 2022 May;30(5):630-631. doi: 10.1038/s41431-022-01085-y. Eur J Hum Genet. 2022. PMID: 35314806 Free PMC article. No abstract available.

Abstract

Polygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, "select and shrink for summary statistics" (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestries; 7,669 women of East Asian ancestries; 1,072 women of African ancestries, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestries. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38 (95% CI: 1.28-1.48, AUC: 0.588) per unit standard deviation, in women of European ancestries; 1.14 (95% CI: 1.08-1.19, AUC: 0.538) in women of East Asian ancestries; 1.38 (95% CI: 1.21-1.58, AUC: 0.593) in women of African ancestries; hazard ratios of 1.36 (95% CI: 1.29-1.43, AUC: 0.592) in BRCA1 pathogenic variant carriers and 1.49 (95% CI: 1.35-1.64, AUC: 0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs.

PubMed Disclaimer

Conflict of interest statement

ADF has received a research grant from AstraZeneca, not directly related to the content of this manuscript. MWB conducts research funded by Amgen, Novartis and Pfizer. PAF conducts research funded by Amgen, Novartis and Pfizer. He received Honoraria from Roche, Novartis and Pfizer. AWK reports research funding to her institution from Myriad Genetics for an unrelated project. UM owns stocks in Abcodia Ltd. Rachel A. Murphy is a consultant for Pharmavite. The other authors declare no conflicts of interest.

Figures

Fig. 1
Fig. 1. PRS model development using penalized regression and LDPred Bayesian approach.
Shown in the left panel is the two-stage approach with five-fold cross validation used for individual level genotype data while the right panel shows the LDPred approach used for summary level data.
Fig. 2
Fig. 2. Association between the PLR PRS models and non-mucinous ovarian cancer by PRS percentiles.
Shown are estimated odds ratios (OR) and confidence intervals for women of European ancestries by percentiles of polygenic risk scores derived from lasso (A), elastic net (B), stepwise (C) and S4 (D) models relative to the middle quintile.
Fig. 3
Fig. 3. Cumulative risk of ovarian cancer between birth and age 80 by PRS percentiles and PRS models.
Shown are the cumulative risk of ovarian cancer risk in UK women by polygenic risk score percentiles. The lasso (A) and elastic net (B) penalized regression models were applied to individual level genotype data, while the stepwise (C) and S4 (D) models were applied to summary level statistics. Note that the median and the mean risk differ because the distribution of the relative risk in the population is left-skewed (the log relative risk is a Normal distribution).

References

    1. Jones MR, Kamara D, Karlan BY, Pharoah PDP, Gayther SA. Genetic epidemiology of ovarian cancer and prospects for polygenic risk prediction. Gynecol Oncol. 2017;147:705–13. doi: 10.1016/j.ygyno.2017.10.001. - DOI - PubMed
    1. Lyra PCM, Rangel LB, Monteiro ANA. Functional landscape of common variants associated with susceptibility to epithelial ovarian cancer. Curr Epidemiol Rep. 2020;7:49–57. doi: 10.1007/s40471-020-00227-4. - DOI
    1. Kar SP, Berchuck A, Gayther SA, Goode EL, Moysich KB, Pearce CL, et al. Common genetic variation and susceptibility to ovarian cancer: current insights and future directions. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2018;27:395–404. doi: 10.1158/1055-9965.EPI-17-0315. - DOI - PubMed
    1. Wray NR, Goddard ME, Visscher PM. Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res. 2007;17:1520–8. doi: 10.1101/gr.6665407. - DOI - PMC - PubMed
    1. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, International Schizophrenia Consortium. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460:748–52. doi: 10.1038/nature08185. - DOI - PMC - PubMed