Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb;8(2):110-117.
doi: 10.1038/s41477-021-01085-8. Epub 2022 Jan 13.

The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation

Affiliations

The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation

Ke Wang et al. Nat Plants. 2022 Feb.

Erratum in

Abstract

Although great progress has been achieved regarding wheat genetic transformation technology in the past decade1-3, genotype dependency, the most impactful factor in wheat genetic transformation, currently limits the capacity for wheat improvement by transgenic integration and genome-editing approaches. The application of regeneration-related genes during in vitro culture could potentially contribute to enhancement of plant transformation efficiency4-11. In the present study, we found that overexpression of the wheat gene TaWOX5 from the WUSCHEL family dramatically increases transformation efficiency with less genotype dependency than other methods. The expression of TaWOX5 in wheat calli prohibited neither shoot differentiation nor root development. Moreover, successfully transformed transgenic wheat plants can clearly be recognized based on a visible botanic phenotype, relatively wider flag leaves. Application of TaWOX5 improved wheat immature embryo transformation and regeneration. The use of TaWOX5 in improvement of transformation efficiency also showed promising results in Triticum monococcum, triticale, rye, barley and maize.

PubMed Disclaimer

References

    1. Ishida, Y. Tsunashima, M. Hiei, Y. & Komari, T. in Agrobacterium Protocols Vol. 1 (ed. Wang, K.) 189–198 (Springer, 2015).
    1. Richardson, T., Thistleton, J., Higgins, T. J., Howitt, C. & Ayliffe, M. Efficient Agrobacterium transformation of elite wheat germplasm without selection. Plant Cell Tissue Organ Cult. 119, 647–659 (2014). - DOI
    1. Wang, K., Liu, H. Y., Du, L. P. & Ye, X. G. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnol. J. 15, 614–623 (2017). - DOI
    1. Zakizadeh, H., Stummann, B. M., Lutken, H. & Muller, R. Isolation and characterization of four somatic embryogenesis receptor-like kinase (RhSERK) genes from miniature potted rose (Rosa hybrida cv. Linda). Plant Cell Tissue Organ Cult. 101, 331–338 (2010). - DOI
    1. Lotan, T. et al. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93, 1195–1205 (1998). - DOI

LinkOut - more resources