Non-invasive transcranial ultrasound stimulation for neuromodulation
- PMID: 35033772
- DOI: 10.1016/j.clinph.2021.12.010
Non-invasive transcranial ultrasound stimulation for neuromodulation
Abstract
Transcranial ultrasound stimulation (TUS) holds great potential as a tool to alter neural circuits non-invasively in both animals and humans. In contrast to established non-invasive brain stimulation methods, ultrasonic waves can be focused on both cortical and deep brain targets with the unprecedented spatial resolution as small as a few cubic millimeters. This focusing allows exclusive targeting of small subcortical structures, previously accessible only by invasive deep brain stimulation devices. The neuromodulatory effects of TUS are likely derived from the kinetic interaction of the ultrasound waves with neuronal membranes and their constitutive mechanosensitive ion channels, to produce short term and long-lasting changes in neuronal excitability and spontaneous firing rate. After decades of mechanistic and safety investigation, the technique has finally come of age, and an increasing number of human TUS studies are expected. Given its excellent compatibility with non-invasive brain mapping techniques, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), as well as neuromodulatory techniques, such as transcranial magnetic stimulation (TMS), systemic TUS effects can readily be assessed in both basic and clinical research. In this review, we present the fundamentals of TUS for a broader audience. We provide up-to-date information on the physical and neurophysiological mechanisms of TUS, available readouts for its neural and behavioral effects, insights gained from animal models and human studies, potential clinical applications, and safety considerations. Moreover, we discuss the indirect effects of TUS on the nervous system through peripheral co-stimulation and how these confounding factors can be mitigated by proper control conditions.
Keywords: Neuromodulation; Non-invasive brain stimulation; Plasticity; Transcranial ultrasound stimulation.
Copyright © 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Comment in
-
Transcranial Pulse Stimulation (TPS) - A highly focused brain stimulation therapy with 3D navigation.Clin Neurophysiol. 2022 Apr;136:247-248. doi: 10.1016/j.clinph.2022.01.127. Epub 2022 Jan 31. Clin Neurophysiol. 2022. PMID: 35131146 No abstract available.
-
Reply to "Transcranial Pulse Stimulation (TPS) - A highly focused brain stimulation therapy with 3D navigation".Clin Neurophysiol. 2022 Apr;136:249. doi: 10.1016/j.clinph.2022.01.129. Epub 2022 Feb 1. Clin Neurophysiol. 2022. PMID: 35168853 No abstract available.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
