Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Dec 15;13(12):13298-13309.
eCollection 2021.

Circulating microRNAs fluctuations in exercise-induced cardiac remodeling: A systematic review

Affiliations
Review

Circulating microRNAs fluctuations in exercise-induced cardiac remodeling: A systematic review

Fabian Sanchis-Gomar et al. Am J Transl Res. .

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that participate in gene expression regulation. It has been observed that circulating levels of miRNAs may fluctuate during exercise, showing numerous cardiac biological and physiological effects such as structural and functional adaptations. We aimed to provide an overview of the currently available information concerning the role of circulating miRNAs in cardiovascular adaptations in response to acute and/or chronic exercise training. Relevant studies published were searched in three databases: PubMed, Web of Science and Scopus. A combination of the following keywords was used: ("microRNA" OR "miRNA" OR "miR" AND "exercise" OR "training" OR "physical activity") AND "(heart hypertrophy" OR "cardiac remodeling" OR "cardiac muscle mass" OR "cardiac hypertrophy"). Only experimental studies, written in English and conducted in healthy individuals were included. Five articles met the inclusion criteria and were finally included in this systematic review after reviewing both title, abstract and full-text. A total of thirty-six circulating cardiac-related miRNAs were analyzed, but only five of them (miR-1, miR-133a, miR-146a, miR-206 and miR-221) were directly associated with cardiac adaptations parameters, while two of them (miR-1 and miR-133a) were related to cardiac hypertrophy. Most of them were upregulated immediately after a marathon and returned to basal levels at longer times. Therefore, we conclude that, although evidence is still limited, and long-term studies are needed to obtain more robust evidence, exercise is more likely to affect circulating cardiac-related miRNAs levels.

Keywords: Cardiac hypertrophy; biomarker; exercise adaptations; miRNA.

PubMed Disclaimer

Conflict of interest statement

None.

Figures

Figure 1
Figure 1
Flow chart of the systematic literature review.
Figure 2
Figure 2
Physiopathological effects of miRNAs in the heart.

References

    1. Huh JY, Mougios V, Kabasakalis A, Fatouros I, Siopi A, Douroudos II, Filippaios A, Panagiotou G, Park KH, Mantzoros CS. Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. J Clin Endocrinol Metab. 2014;99:E2154–2161. - PubMed
    1. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, Macera CA, Heath GW, Thompson PD, Bauman A. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39:1423–1434. - PubMed
    1. Fagard R. Athlete’s heart. Heart. 2003;89:1455–1461. - PMC - PubMed
    1. Golbidi S, Laher I. Exercise and the cardiovascular system. Cardiol Res Pract. 2012;2012:210852. - PMC - PubMed
    1. Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE. The athlete’s heart. A meta-analysis of cardiac structure and function. Circulation. 2000;101:336–344. - PubMed

LinkOut - more resources