Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Dec 30;7(1):293-298.
doi: 10.1021/acsomega.1c04679. eCollection 2022 Jan 11.

TfNN15N: A γ-15N-Labeled Diazo-Transfer Reagent for the Synthesis of β-15N-Labeled Azides

Affiliations

TfNN15N: A γ-15N-Labeled Diazo-Transfer Reagent for the Synthesis of β-15N-Labeled Azides

Hyeok-Jun Kwon et al. ACS Omega. .

Abstract

Azides are infrared (IR) probes that are important for structure and dynamics studies of proteins. However, they often display complex IR spectra owing to Fermi resonances and multiple conformers. Isotopic substitution of azides weakens the Fermi resonance, allowing more accurate IR spectral analysis. Site-specifically 15N-labeled aromatic azides, but not aliphatic azides, are synthesized through nitrosation. Both 15N-labeled aromatic and aliphatic azides are synthesized through nucleophilic substitution or diazo-transfer reaction but as an isotopomeric mixture. We present the synthesis of TfNN15N, a γ-15N-labeled diazo-transfer reagent, and its use to prepare β-15N-labeled aliphatic as well as aromatic azides.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. (a–d) Syntheses of Site-Specifically 15N-Labeled Azides
Scheme 2
Scheme 2. Synthesis of TfNN15N 1
Figure 1
Figure 1
IR spectra of TfNN15N 1 and TfNNN 1′ in CH2Cl2 at 20 °C.
Scheme 3
Scheme 3. Syntheses of Azides 3 by Diazo-Transfer Reactions of Amines 2 with TfNN15N 1
Figure 2
Figure 2
1H NMR spectra (500 MHz, CDCl3) of AlaN15NN 3a and AlaNNN 3a′ in the β-proton region: 3a, δ 3.73 (ddd, J = 12.4, 5.1, 3.6 Hz, 1H), 3.53 (ddd, J = 12.3, 6.3, 3.8 Hz, 1H); 3a′, δ 3.72 (dd, J = 12.3, 4.8 Hz, 1H), 3.54 (dd, J = 12.3, 6.3 Hz, 1H).
Figure 3
Figure 3
IR spectra of AlaN15NN 3a and AlaNNN 3a′ in DMF at 20 °C.

Similar articles

Cited by

References

    1. Lockhart D. J.; Kim P. S. Internal Stark effect measurement of the electric field at the amino terminus of an α helix. Science 1992, 257, 947–951. 10.1126/science.1502559. - DOI - PubMed
    2. Lockhart D. J.; Kim P. S. Electrostatic screening of charge and dipole interactions with the helix backbone. Science 1993, 260, 198–202. 10.1126/science.8469972. - DOI - PubMed
    3. Giaimo J. M.; Gusev A. V.; Wasielewski M. R. Excited-state symmetry breaking in cofacial and linear dimers of a green perylenediimide chlorophyll analogue leading to ultrafast charge separation. J. Am. Chem. Soc. 2002, 124, 8530–8531. 10.1021/ja026422l. - DOI - PubMed
    4. Miyawaki A.; Llopis J.; Heim R.; McCaffery J. M.; Adams J. A.; Ikural M.; Tsien R. Y. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 1997, 388, 882–887. 10.1038/42264. - DOI - PubMed
    5. Tsien R. Y. The green fluorescent protein. Annu. Rev. Biochem. 1998, 67, 509–544. 10.1146/annurev.biochem.67.1.509. - DOI - PubMed
    1. Park E. S.; Boxer S. G. Origins of the sensitivity of molecular vibrations to electric fields: Carbonyl and nitrosyl stretches in model compounds and proteins. J. Phys. Chem. B 2002, 106, 5800–5806. 10.1021/jp0203043. - DOI
    2. Stavrov S. S.; Wright W. W.; Vanderkooi J. M.; Fidy J.; Kaposi A. D. Optical and IR absorption as probe of dynamics of heme proteins. Biopolymers 2002, 67, 255–258. 10.1002/bip.10103. - DOI - PubMed
    1. Chattopadhyay A.; Boxer S. G. Vibrational Stark effect spectroscopy. J. Am. Chem. Soc. 1995, 117, 1449–1450. 10.1021/ja00109a038. - DOI
    2. Schultz K. C.; Supekova L.; Ryu Y.; Xie J.; Perera R.; Schultz P. G. A genetically encoded infrared probe. J. Am. Chem. Soc. 2006, 128, 13984–13985. 10.1021/ja0636690. - DOI - PubMed
    1. Fafarman A. T.; Webb L. J.; Chuang J. I.; Boxer S. G. Site-specific conversion of cysteine thiols into thiocyanate creates an IR probe for electric fields in proteins. J. Am. Chem. Soc. 2006, 128, 13356–13357. 10.1021/ja0650403. - DOI - PMC - PubMed
    2. Park K.-H.; Jeon J.; Park Y.; Lee S.; Kwon H.-J.; Joo C.; Park S.; Han H.; Cho M. Infrared probes based on nitrile-derivatized prolines: Thermal insulation effect and enhanced dynamic range. J. Phys. Chem. Lett. 2013, 4, 2105–2110. 10.1021/jz400954r. - DOI
    1. Adhikary R.; Zimmermann J.; Romesberg F. E. Transparent window vibrational probes for the characterization of proteins with high structural and temporal resolution. Chem. Rev. 2017, 117, 1927–1969. 10.1021/acs.chemrev.6b00625. - DOI - PubMed
    2. Chin J. K.; Jimenez R.; Romesberg F. E. Direct observation of protein vibrations by selective incorporation of spectroscopically observable carbon-deuterium bonds in cytochrome c. J. Am. Chem. Soc. 2001, 123, 2426–2427. 10.1021/ja0033741. - DOI - PubMed
    3. Romesberg F. E. Multidisciplinary experimental approaches to characterizing biomolecular dynamics. ChemBioChem 2003, 4, 563–571. 10.1002/cbic.200300572. - DOI - PubMed