Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Feb 17;85(2).
doi: 10.1088/1361-6633/ac4be9.

Carrier recombination in CH3NH3PbI3: why is it a slow process?

Affiliations
Review

Carrier recombination in CH3NH3PbI3: why is it a slow process?

Abhishek Maiti et al. Rep Prog Phys. .

Abstract

In methylammonium lead iodide (MAPbI3), a slow recombination process of photogenerated carriers has often been considered to be the most intriguing property of the material resulting in high-efficiency perovskite solar cells. In spite of intense research over a decade or so, a complete understanding of carrier recombination dynamics in MAPbI3has remained inconclusive. In this regard, several microscopic processes have been proposed so far in order to explain the slow recombination pathways (both radiative and non-radiative), such as the existence of shallow defects, a weak electron-phonon coupling, presence of ferroelectric domains, screening of band-edge charges through the formation of polarons, occurrence of the Rashba splitting in the band(s), and photon-recycling in the material. Based on the up-to-date findings, we have critically assessed each of these proposals/models to shed light on the origin of a slow recombination process in MAPbI3. In this review, we have presented the interplay between the mechanisms and our views/perspectives in determining the likely processes, which may dictate the recombination dynamics in the material. We have also deliberated on their interdependences in decoupling contributions of different recombination processes.

Keywords: Rashba band splitting; defect tolerance; ferroelectric domains; methylammonium lead iodide; photon recycling; polaron formation; slow recombination process.

PubMed Disclaimer

LinkOut - more resources