Variability of EEG electrode positions and their underlying brain regions: visualizing gel artifacts from a simultaneous EEG-fMRI dataset
- PMID: 35040596
- PMCID: PMC8865144
- DOI: 10.1002/brb3.2476
Variability of EEG electrode positions and their underlying brain regions: visualizing gel artifacts from a simultaneous EEG-fMRI dataset
Abstract
Introduction: We investigated the between-subject variability of EEG (electroencephalography) electrode placement from a simultaneously recorded EEG-fMRI (functional magnetic resonance imaging) dataset.
Methods: Neuro-navigation software was used to localize electrode positions, made possible by the gel artifacts present in the structural magnetic resonance images. To assess variation in the brain regions directly underneath electrodes we used MNI coordinates, their associated Brodmann areas, and labels from the Harvard-Oxford Cortical Atlas. We outline this relatively simple pipeline with accompanying analysis code.
Results: In a sample of 20 participants, the mean standard deviation of electrode placement was 3.94 mm in x, 5.55 mm in y, and 7.17 mm in z, with the largest variation in parietal and occipital electrodes. In addition, the brain regions covered by electrode pairs were not always consistent; for example, the mean location of electrode PO7 was mapped to BA18 (secondary visual cortex), whereas PO8 was closer to BA19 (visual association cortex). Further, electrode C1 was mapped to BA4 (primary motor cortex), whereas C2 was closer to BA6 (premotor cortex).
Conclusions: Overall, the results emphasize the variation in electrode positioning that can be found even in a fixed cap. This may be particularly important to consider when using EEG positioning systems to inform non-invasive neurostimulation.
Keywords: EEG cap | gel artifact; EEG-fMRI; TMS neuro-navigation; electrode positions.
© 2022 The Authors. Brain and Behavior published by Wiley Periodicals LLC.
Figures


Similar articles
-
A semi-automatic method to determine electrode positions and labels from gel artifacts in EEG/fMRI-studies.Neuroimage. 2012 Jan 2;59(1):399-403. doi: 10.1016/j.neuroimage.2011.07.021. Epub 2011 Jul 19. Neuroimage. 2012. PMID: 21784161
-
Application of polymer sensitive MRI sequence to localization of EEG electrodes.J Neurosci Methods. 2017 Feb 15;278:36-45. doi: 10.1016/j.jneumeth.2016.12.013. Epub 2016 Dec 23. J Neurosci Methods. 2017. PMID: 28017737
-
Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.J Vis Exp. 2012 Jun 26;(64):3993. doi: 10.3791/3993. J Vis Exp. 2012. PMID: 22782131 Free PMC article.
-
Algorithm to find high density EEG scalp coordinates and analysis of their correspondence to structural and functional regions of the brain.J Neurosci Methods. 2014 May 30;229:84-96. doi: 10.1016/j.jneumeth.2014.04.020. Epub 2014 Apr 24. J Neurosci Methods. 2014. PMID: 24769168 Free PMC article.
-
[Simultaneous EEG-fMRI measurements: insights in applications and challenges].Nervenarzt. 2014 Jun;85(6):671-9. doi: 10.1007/s00115-014-4012-z. Nervenarzt. 2014. PMID: 24817636 Review. German.
Cited by
-
A Machine-Learning-Based Analysis of Resting State Electroencephalogram Signals to Identify Latent Schizotypal and Bipolar Development in Healthy University Students.Diagnostics (Basel). 2025 Feb 13;15(4):454. doi: 10.3390/diagnostics15040454. Diagnostics (Basel). 2025. PMID: 40002604 Free PMC article.
-
Heterochronous laminar maturation in the human prefrontal cortex.bioRxiv [Preprint]. 2025 Jan 30:2025.01.30.635751. doi: 10.1101/2025.01.30.635751. bioRxiv. 2025. PMID: 39975178 Free PMC article. Preprint.
-
Oscillatory signatures of monitoring and anticipatory strategies for probabilistic vs deterministic cues.Imaging Neurosci (Camb). 2025 Mar 7;3:imag_a_00496. doi: 10.1162/imag_a_00496. eCollection 2025. Imaging Neurosci (Camb). 2025. PMID: 40800925 Free PMC article.
-
An Umbrella Review of the Fusion of fMRI and AI in Autism.Diagnostics (Basel). 2023 Nov 28;13(23):3552. doi: 10.3390/diagnostics13233552. Diagnostics (Basel). 2023. PMID: 38066793 Free PMC article. Review.
-
Spatial Visual Imagery (SVI)-Based Electroencephalograph Discrimination for Natural CAD Manipulation.Sensors (Basel). 2024 Jan 25;24(3):785. doi: 10.3390/s24030785. Sensors (Basel). 2024. PMID: 38339501 Free PMC article.
References
-
- Beynel, L. , Appelbaum, L. G. , Luber, B. , Crowell, C. A. , Hilbig, S. A. , Lim, W. , Nguyen, D. , Chrapliwy, N. A. , Davis, S. W. , Cabeza, R. , Lisanby, S. H. , & Deng, Z.‐D. (2019). Effects of online repetitive transcranial magnetic stimulation (rTMS) on cognitive processing: A meta‐analysis and recommendations for future studies. Neuroscience & Biobehavioral Reviews, 107, 47–58. 10.1016/j.neubiorev.2019.08.018 - DOI - PMC - PubMed
-
- Bhutada, A. S. , Sepúlveda, P. , Torres, R. , Ossandón, T. , Ruiz, S. , & Sitaram, R. (2020). Semi‐automated and direct localization and labeling of EEG electrodes using MR structural images for simultaneous fMRI‐EEG. Frontiers in Neuroscience, 14, 1134. 10.3389/fnins.2020.558981 - DOI - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous