Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan;25(1):75-84.
doi: 10.1111/ner.13510.

A Clinical Feasibility Study of Spinal Evoked Compound Action Potential Estimation Methods

Affiliations
Free article

A Clinical Feasibility Study of Spinal Evoked Compound Action Potential Estimation Methods

Krishnan Chakravarthy et al. Neuromodulation. 2022 Jan.
Free article

Abstract

Objectives: Spinal cord stimulation (SCS) is a treatment for chronic neuropathic pain. Recently, SCS has been enhanced further with evoked compound action potential (ECAP) sensing. Characteristics of the ECAP, if appropriately isolated from concurrent stimulation artifact (SA), may be used to control, and aid in the programming of, SCS systems. Here, we characterize the sensitivity of the ECAP growth curve slope (S) to both neural response (|Sresp|) and SA contamination (|Sart|) for four spinal ECAP estimation methods with a novel performance measure (|Sresp/Sart|).

Materials and methods: We collected a library of 112 ECAP and associated artifact recordings with swept stimulation amplitudes from 14 human subjects. We processed the signals to reduce SA from these recordings by applying one of three schemes: a simple high-pass (HP) filter, subtracting an artifact model (AM) consisting of decaying exponential and linear components, or applying a template correlation method consisting of a triangularly weighted sinusoid. We compared these against each other and to P2-N1, a standard method of measuring ECAP amplitude. We then fit the ECAP estimates from each method with a function representing the growth curve and calculated the Sresp and Sart parameters following the fit.

Results: Any SA reduction scheme selected may result in under- or overestimation of neural activation or misclassification of SA as ECAP. In these experiments, the ratio of neural signal preservation to SA misclassification (|Sresp/Sart|) on the ECAP estimate was superior (p < 0.05) with the HP and AM schemes relative to the others.

Conclusions: This work represents the first comprehensive assessment of spinal ECAP estimation schemes. Understanding the clinically relevant sensitivities of these schemes is increasingly important, particularly with closed-loop SCS systems using ECAP as a feedback control variable where misclassification of artifact as neural signal may lead to suboptimal therapy adjustments.

Keywords: Artifact; closed-loop; evoked compound action potentials; pain; spinal cord stimulation.

PubMed Disclaimer

Comment in