Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan 20;21(1):20.
doi: 10.1186/s12940-022-00829-z.

Modeling present and future climate risk of dengue outbreak, a case study in New Caledonia

Affiliations

Modeling present and future climate risk of dengue outbreak, a case study in New Caledonia

Noé Ochida et al. Environ Health. .

Abstract

Background: Dengue dynamics result from the complex interactions between the virus, the host and the vector, all being under the influence of the environment. Several studies explored the link between weather and dengue dynamics and some investigated the impact of climate change on these dynamics. Most attempted to predict incidence rate at a country scale or assess the environmental suitability at a global or regional scale. Here, we propose a new approach which consists in modeling the risk of dengue outbreak at a local scale according to climate conditions and study the evolution of this risk taking climate change into account. We apply this approach in New Caledonia, where high quality data are available.

Methods: We used a statistical estimation of the effective reproduction number (Rt) based on case counts to create a categorical target variable : epidemic week/non-epidemic week. A machine learning classifier has been trained using relevant climate indicators in order to estimate the probability for a week to be epidemic under current climate data and this probability was then estimated under climate change scenarios.

Results: Weekly probability of dengue outbreak was best predicted with the number of days when maximal temperature exceeded 30.8°C and the mean of daily precipitation over 80 and 60 days prior to the predicted week respectively. According to scenario RCP8.5, climate will allow dengue outbreak every year in New Caledonia if the epidemiological and entomological contexts remain the same.

Conclusion: We identified locally relevant climatic factor driving dengue outbreaks in New Caledonia and assessed the inter-annual and seasonal risk of dengue outbreak under different climate change scenarios up to the year 2100. We introduced a new modeling approach to estimate the risk of dengue outbreak depending on climate conditions. This approach is easily reproducible in other countries provided that reliable epidemiological and climate data are available.

Keywords: climate change; dengue; disease outbreaks; effective reproduction number; prediction.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig 1
Fig 1
Climate based prediction of weekly dengue outbreak risk during 1973-2020 in New Caledonia.
Fig 2
Fig 2
Evolution of the inter-annual risk of dengue outbreak until 2100 per RCP scenarios
Fig 3
Fig 3
Evolution of the seasonal risk of dengue outbreak until 2100 per RCP scenarios
Fig. 4
Fig. 4
Importance score of the selected variables in the SVM model
Fig. 5
Fig. 5
Partial dependence of the probability of dengue outbreak to the selected variables in the SVM model

References

    1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504–507. doi: 10.1038/nature12060. - DOI - PMC - PubMed
    1. Morin CW, Comrie AC. Ernst Kacey. Climate and Dengue Transmission: Evidence and Implications. Environ Health Perspect. 2013;121(11–12):1264–1272. doi: 10.1289/ehp.1306556. - DOI - PMC - PubMed
    1. Hoegh-Guldberg O, Jacob D, Taylor M, Bindi M, Brown S, Camilloni I, Diedhiou A, Djalante R, Ebi KL, Engelbrecht F, Guiot J, Hijioka Y, Mehrotra S, Payne A, Seneviratne SI, Thomas A, Warren R, and Zhou G. Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. [Masson-Delmotte V, Zhai P, Pörtner HO ,Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, and Waterfield T (eds.)]. In Press. 2018.
    1. Messina JP, Brady OJ, Golding N, Kraemer MUG, Wint GRW, Ray SE, et al. The current and future global distribution and population at risk of dengue. Nat Microbiol. 2019;4(9):1508–1515. doi: 10.1038/s41564-019-0476-8. - DOI - PMC - PubMed
    1. Colón-González FJ, Harris I, Osborn TJ, Steiner São Bernardo C, Peres CA, Hunter PR, et al. Limiting global-mean temperature increase to 1.5–2 °C could reduce the incidence and spatial spread of dengue fever in Latin America. Proc Natl Acad Sci. 2018;115(24):6243–6248. doi: 10.1073/pnas.1718945115. - DOI - PMC - PubMed

Publication types