General stereoretentive preparation of chiral secondary mixed alkylmagnesium reagents and their use for enantioselective electrophilic aminations
- PMID: 35059149
- PMCID: PMC8694387
- DOI: 10.1039/d1sc05315a
General stereoretentive preparation of chiral secondary mixed alkylmagnesium reagents and their use for enantioselective electrophilic aminations
Abstract
A general preparation of enantiomerically and diastereomerically enriched secondary alkylmagnesium reagents was reported as well as their use for performing highly stereoselective transition-metal free electrophilic aminations leading to α-chiral amines in up to 97% ee. Thus, the reaction of t-BuLi (2.2 equiv.) with a mixture of chiral secondary alkyl iodides and the commercially available magnesium reagent Me3SiCH2MgCl in a 2 : 1 mixture of pentane and diethyl ether at up to -50 °C provided optically enriched secondary mixed alkylmagnesium species of the type alkyl(Me)CHMgCH2SiMe3 with high retention of configuration (up to 99% ee). The resulting enantiomerically enriched dialkylmagnesium reagents were trapped with electrophiles such as non-enolizable ketones, aldehydes, acid chlorides, isocyanates, chlorophosphines and O-benzoyl hydroxylamines providing α-chiral tertiary alcohols, ketones, amides, phosphines and tertiary amines in up to 89% yield (over three reaction steps) and up to 99% ee.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures




References
-
- Richey H. G., Grignard Reagents: New Developments, John Wiley & Sons, Ltd.New York, 1999
- Rappoport Z. and Marek I., PATAI's Chemistry of Functional Groups: The Chemistry of Organomagnesium Compounds, John Wiley & Sons, Ltd., New York, 2008
- Knochel P. Dohle W. Gommermann N. Kneisel F. F. Kopp F. Korn T. Sapountzis I. Angew. Chem., Int. Ed. 2003;42:4302–4320. doi: 10.1002/anie.200300579. - DOI - PubMed
- Haag B. Mosrin M. Ila H. Malakhov V. Angew. Chem., Int. Ed. 2011;50:9794–9824. doi: 10.1002/anie.201101960. - DOI - PubMed
- Kremsmair A. Harenberg J. H. Schwärzer K. Hess A. Knochel P. Chem. Sci. 2021;12:6011–6019. doi: 10.1039/D1SC00685A. - DOI - PMC - PubMed
-
- Hoffmann R. W. Hölzer B. Knopff O. Harms K. Angew. Chem., Int. Ed. 2000;39:3072–3074. doi: 10.1002/1521-3773(20000901)39:17<3072::AID-ANIE3072>3.0.CO;2-4. - DOI - PubMed
- Hoffmann R. W. Hölzer B. Chem. Commun. 2001:491–492. doi: 10.1039/B009678O. - DOI
- Hoffmann R. W. Hölzer B. Knopff O. Org. Lett. 2001;3:1945–1948. doi: 10.1021/ol0160248. - DOI - PubMed
- Hoffmann R. W. Hölzer B. J. Am. Chem. Soc. 2002;124:4204–4205. doi: 10.1021/ja025638k. - DOI - PubMed
- Hölzer B. Hoffmann R. W. Chem. Commun. 2003:732–733. doi: 10.1039/B300033H. - DOI - PubMed
-
- We used 2.2 equiv. of t-BuLi for best results (formation of lithium reagent and formation of isobutylene and isobutene as side-products); see: Schlosser M., Organometallics in Synthesis: Third Manual, John Wiley & Sons, Ltd., New York, 2013
LinkOut - more resources
Full Text Sources