Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Dec 13;13(1):263-273.
doi: 10.1039/d1sc03865f. eCollection 2021 Dec 22.

Cu(i) catalysis for selective condensation/bicycloaromatization of two different arylalkynes: direct and general construction of functionalized C-N axial biaryl compounds

Affiliations

Cu(i) catalysis for selective condensation/bicycloaromatization of two different arylalkynes: direct and general construction of functionalized C-N axial biaryl compounds

Qian Shang et al. Chem Sci. .

Abstract

Selective condensation/bicycloaromatization of two different arylalkynes is firstly developed under ligand-free copper(i)-catalysis, which allows the direct synthesis of C-N axial biaryl compounds in high yields with excellent selectivity and functional group tolerance. Due to the critical effects of Cu(i) catalyst and HFIP, many easily occurring undesired reactions are suppressed, and the coupled five-six aromatic rings are constructed via the selective formation of two C(sp2)-N(sp2) bonds and four C(sp2)-C(sp2) bonds. The achievement of moderate enantioselectivity verifies its potential for the simplest asymmetric synthesis of atropoisomeric biaryls. Western blotting demonstrated that the newly developed compounds are promising targets in biology and pharmaceuticals. This unique reaction can construct structurally diverse C-N axial biaryl compounds that have never been reported by other methods, and might be extended to various applications in materials, chemistry, biology, and pharmaceuticals.

PubMed Disclaimer

Conflict of interest statement

The authors declare that there are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Strategies to construct biaryl compounds.
Fig. 1
Fig. 1. Biologically active 1,1′-naphthylindole derivatives.
Scheme 2
Scheme 2. Condensation/bicycloaromatization of o-amino and o-carbonyl arylalkynes.
Scheme 3
Scheme 3. Substrate scope.
Scheme 4
Scheme 4. Scope of heteroaryl alkynes. aReaction conditions: a (0.05 mmol), b (1.2 equiv., 0.06 mmol), CuI (10 mol%), Cs2CO3 (2.0 equiv.), HFIP (1.0 mL), 100 °C, 24 h, N2. Isolated yields are provided.
Scheme 5
Scheme 5. Control experiments.
Scheme 6
Scheme 6. Possible reaction mechanism.
Scheme 7
Scheme 7. Substrate scope of axially chiral compounds. Reaction conditions: (1) a (0.2 mmol), 4b (1.2 equiv.), CuI (5 mol%), Cs2CO3 (2.0 equiv.) HFIP, 80 °C, 50 min; (2) PdCl2 (5 mol%), L (6 mol%) HFIP, 80 °C, 15 h.
Fig. 2
Fig. 2. BV2 cells were pretreated with 10 μM A1 for 2 h and then treated with LPS (100 ng mL−1) for 6 h. (a) The levels of P65 and the corresponding phosphorylated form were measured by western blotting (n = 3 per group). Compared with the control group, **P < 0.01, vs. LPS group, *P < 0.05. (b) BV2 cells were pretreated with different concentrations (5–20 μM) of A1 for 2 h and were then treated with 100 ng mL−1 LPS for 6 h. The levels of IL-6 were detected by western blotting (A1 = 15c).

References

    1. For selected books, see:

    2. Cepanec I., Synthesis of Biaryls, Elsevier, Amsterdam, Netherlands, 2004
    3. Larry Y., Privileged Structures in Drug Discovery, Wiley-VCH, Weinheim, Germany, 2018
    4. Burke A. J. and Marques C. S., Catalytic Arylation Methods-From the Academic Lab to Industrial Processes, Wiley-VCH, Weinheim, Germany, 2015
    1. Wezeman T. Brase S. Masters K. S. Nat. Prod. Rep. 2015;32:6–28. doi: 10.1039/C4NP00050A. - DOI - PubMed
    2. Huttel W. Muller M. Nat. Prod. Rep. 2021;38:1011–1043. doi: 10.1039/D0NP00010H. - DOI - PubMed
    3. Li Q. Xia T. Yao L. Deng H. Liao X. Chem. Sci. 2015;6:3599–3605. doi: 10.1039/C5SC00338E. - DOI - PMC - PubMed
    4. DeLorbe J. E. Horne D. Jove R. Mennen S. M. Nam S. Zhang F. L. Overman L. E. J. Am. Chem. Soc. 2013;135:4117–4128. doi: 10.1021/ja400315y. - DOI - PMC - PubMed
    5. Hu J. Sarrami F. Li H. Zhang G. Stubbs K. A. Lacey E. Stewart S. G. Karton A. Piggott A. M. Chooi Y. H. Chem. Sci. 2019;10:1457–1465. doi: 10.1039/C8SC02870B. - DOI - PMC - PubMed
    6. Podlesny E. E. Kozlowski M. C. J. Nat. Prod. 2012;75:1125–1129. doi: 10.1021/np300141t. - DOI - PMC - PubMed
    1. Du Y. L. Ryan K. S. Curr. Opin. Chem. Biol. 2016;31:74–81. doi: 10.1016/j.cbpa.2016.01.017. - DOI - PubMed
    2. Du Y. L. Ryan K. S. ACS Synth. Biol. 2015;4:682–688. doi: 10.1021/sb5003218. - DOI - PMC - PubMed
    3. Taha M. Uddin I. Gollapalli M. Almandil N. B. Rahim F. Farooq R. K. Nawaz M. Ibrahim M. Alqahtani M. A. Bamarouf Y. A. Selvaraj M. BMC Chem. 2019;13:102. doi: 10.1186/s13065-019-0617-4. - DOI - PMC - PubMed
    4. Arai T. Yamamoto Y. Awata A. Kamiya K. Ishibashi M. Arai M. A. Angew. Chem., Int. Ed. 2013;52:2486–2490. doi: 10.1002/anie.201208918. - DOI - PubMed
    5. Ren Y. Wang Y. Li G. Zhang Z. Ma L. Cheng B. Chen J. J. Med. Chem. 2021;64:4498–4515. doi: 10.1021/acs.jmedchem.0c01837. - DOI - PubMed
    6. Kaul M. Parhi A. K. Zhang Y. LaVoie E. J. Tuske S. Arnold E. Kerrigan J. E. Pilch D. S. J. Med. Chem. 2012;55:10160–10176. doi: 10.1021/jm3012728. - DOI - PMC - PubMed
    1. Yasukochi H. Atago T. Tanaka A. Nakatsuji H. Yoshida E. Kakehi A. Nishii Y. Tanabe Y. Org. Biomol. Chem. 2008;6:540–547. doi: 10.1039/B714614K. - DOI - PubMed
    2. Bertinetti B. V. Rodriguez M. A. Godeas A. M. Cabrera G. M. J. Antibiot. 2010;63:681–683. doi: 10.1038/ja.2010.103. - DOI - PubMed
    1. Wang H. Ji X. Li Z. Huang F. Adv. Mater. 2017;29:1606117. doi: 10.1002/adma.201606117. - DOI - PubMed
    2. Qian X. Shao L. Li H. Yan R. Wang X. Hou L. J. Power Sources. 2016;319:39–47. doi: 10.1016/j.jpowsour.2016.04.043. - DOI
    3. d'Ischia M. Napolitano A. Pezzella A. Meredith P. Sarna T. Angew. Chem., Int. Ed. 2009;48:3914–3921. doi: 10.1002/anie.200803786. - DOI - PMC - PubMed
    4. Xu X. Zhou X. Qu L. Wang L. Song J. Wu D. Zhou W. Zhou X. Xiang H. Wang J. Liu J. ACS Appl. Bio Mater. 2020;3:7236–7242. doi: 10.1021/acsabm.0c01063. - DOI - PubMed