Cascade-Targeting Poly(amino acid) Nanoparticles Eliminate Intracellular Bacteria via On-Site Antibiotic Delivery
- PMID: 35066925
- DOI: 10.1002/adma.202109789
Cascade-Targeting Poly(amino acid) Nanoparticles Eliminate Intracellular Bacteria via On-Site Antibiotic Delivery
Abstract
Intracellular bacteria in latent or dormant states tolerate high-dose antibiotics. Fighting against these opportunistic bacteria has been a long-standing challenge. Herein, the design of a cascade-targeting drug delivery system (DDS) that can sequentially target macrophages and intracellular bacteria, exhibiting on-site drug delivery, is reported. The DDS is fabricated by encapsulating rifampicin (Rif) into mannose-decorated poly(α-N-acryloyl-phenylalanine)-block-poly(β-N-acryloyl-d-aminoalanine) nanoparticles, denoted as Rif@FAM NPs. The mannose units on Rif@FAM NPs guide the initial macrophage-specific uptake and intracellular accumulation. After the uptake, the detachment of mannose in acidic phagolysosome via Schiff base cleavage exposes the d-aminoalanine moieties, which subsequently steer the NPs to escape from lysosomes and target intracellular bacteria through peptidoglycan-specific binding, as evidenced by the in situ/ex situ co-localization using confocal, flow cytometry, and transmission electron microscopy. Through the on-site Rif delivery, Rif@FAM NPs show superior in vitro and in vivo elimination efficiency than the control groups of free Rif or the DDSs lacking the macrophages- or bacteria-targeting moieties. Furthermore, Rif@FAM NPs remodel the innate immune response of the infected macrophages by upregulating M1/M2 polarization, resulting in a reinforced antibacterial capacity. Therefore, this biocompatible DDS enabling macrophages and bacteria targeting in a cascade manner provides a new outlook for the therapy of intracellular pathogen infection.
Keywords: cascade-targeting drug delivery systems; intracellular bacteria targeting; macrophage polarization; on-site antibiotic delivery; poly(N-acryloyl amino acid).
© 2022 Wiley-VCH GmbH.
References
-
- a) J. Fu, Y. Li, Y. Zhang, Y. Liang, Y. Zheng, Z. Li, S. Zhu, C. Li, Z. Cui, S. Wu, Adv. Mater. 2021, 33, 2102926;
-
- b) P. Santucci, D. J. Greenwood, A. Fearns, K. Chen, H. Jiang, M. G. Gutierrez, Nat. Commun. 2021, 12, 3816;
-
- c) H.-K. Kwon, I. Lee, K. E. Yu, S. V. Cahill, K. D. Alder, Lee, S. C. M. Dussik, J. Back, J. Choi, L. Song, T. R. Kyriakides, F. Y. Lee, Sci. Adv. 2021, 7, eabf2665.
-
- a) X. Liu, F. Liu, S. Ding, J. Shen, K. Zhu, Adv. Sci. 2020, 7, 1900840;
-
- b) S. Trouillet-Assant, L. Lelièvre, P. Martins-Simões, L. Gonzaga, J. Tasse, F. Valour, J.-P. Rasigade, F. Vandenesch, R. L. Muniz Guedes, A. T. Ribeiro de Vasconcelos, J. Caillon, S. Lustig, T. Ferry, C. Jacqueline, G. Loss de Morais, F. Laurent, Cell. Microbiol. 2016, 18, 1405;
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
