Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan 5:(179).
doi: 10.3791/63394.

Cantilever Bending of Murine Femoral Necks

Affiliations

Cantilever Bending of Murine Femoral Necks

Emma Knapp et al. J Vis Exp. .

Abstract

Fractures in the femoral neck are a common occurrence in individuals with osteoporosis. Many mouse models have been developed to assess disease states and therapies, with biomechanical testing as a primary outcome measure. However, traditional biomechanical testing focuses on torsion or bending tests applied to the midshaft of the long bones. This is not typically the site of high-risk fractures in osteoporotic individuals. Therefore, a biomechanical testing protocol was developed that tests the femoral necks of murine femurs in cantilever bending loading to replicate better the types of fractures experienced by osteoporosis patients. Since the biomechanical outcomes are highly dependent on the flexural loading direction relative to the femoral neck, 3D printed guides were created to maintain a femoral shaft at an angle of 20° relative to the loading direction. The new protocol streamlined the testing by reducing variability in alignment (21.6° ± 1.5°, COV = 7.1%, n = 20) and improved reproducibility in the measured biomechanical outcomes (average COV = 26.7%). The new approach using the 3D printed guides for reliable specimen alignment improves rigor and reproducibility by reducing the measurement errors due to specimen misalignment, which should minimize sample sizes in mouse studies of osteoporosis.

PubMed Disclaimer

Publication types

LinkOut - more resources