Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov;40(11):2565-2575.
doi: 10.1002/jor.25281. Epub 2022 Feb 4.

Similarity and difference between aging and puncture-induced intervertebral disc degeneration

Affiliations
Free article

Similarity and difference between aging and puncture-induced intervertebral disc degeneration

Shuangjun He et al. J Orthop Res. 2022 Nov.
Free article

Abstract

The purpose of our study was to investigate the changes in micromorphology and mechanical properties of intervertebral discs degeneration induced by aging and puncture. Normal group (NG), 2 weeks post-puncture degeneration group (PDG) and aging degeneration group (ADG) each included 10 rats. Plain film, magnetic resonance imaging, and histological testing were utilized to assess intervertebral disc degeneration. Atomic force microscope was utilized to analyze the microstructure and elastic modulus of the intervertebral disc, while immunohistochemistry was employed to assess alterations in the cell matrix using collagen I, collagen II, matrix metalloproteinase-3 (MMP-3), and tumour necrosis factor-α (TNF-α). The results showed that the disc height ratio between PDG and ADG decreased. In the PDG and ADG group, histological scores both increased, the gray value of the T2 signal decreased, the proportion of MMP-3 and TNF-positive cells in intervertebral disc tissues was higher (p < 0.05) and the IOD values of COL-2 lower in intervertebral disc tissues (p < 0.05). The elastic modulus of PDG and ADG annulus fibers (AF) increased compared to the NG (p < 0.05); when compared to PDG, the elastic modulus of ADG AF decreased (p < 0.05). The elastic modulus of PDG and ADG collagen increased in the nucleus pulposus (NP, p < 0.05); ADG had a greater AF diameter than NG and PDG (p < 0.05). The results indicated that ADG fiber diameter thickens, and chronic inflammation indicators rise; PDG suffers from severe extracellular matrix loss. The degeneration of the ADG and PDG intervertebral discs is different. The results provide foundation for clinical research.

Keywords: atomic force microscopy; biomechanics; collagen fiber; elastic modulus; intervertebral disc.

PubMed Disclaimer

References

REFERENCES

    1. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789-1858.
    1. Choi H, Tessier S, Silagi ES, et al. A novel mouse model of intervertebral disc degeneration shows altered cell fate and matrix homeostasis. Matrix Biol. 2018;70:102-122.
    1. Oichi T, Taniguchi Y, Soma K, et al. A mouse intervertebral disc degeneration model by surgically induced instability. Spine (Phila Pa 1976). 2018;43(10):E557-E564.
    1. Manek NJ, MacGregor AJ. Epidemiology of back disorders: prevalence, risk factors, and prognosis. Curr Opin Rheumatol. 2005;17(2):134-140.
    1. Dolan P, Luo J, Pollintine P, Landham PR, Stefanakis M, Adams MA. Intervertebral disc decompression following endplate damage: implications for disc degeneration depend on spinal level and age. Spine (Phila Pa 1976). 2013;38(17):1473-1481.

Publication types

LinkOut - more resources