Hetero-Integration of Silicon Nanomembranes with 2D Materials for Bioresorbable, Wireless Neurochemical System
- PMID: 35073597
- DOI: 10.1002/adma.202108203
Hetero-Integration of Silicon Nanomembranes with 2D Materials for Bioresorbable, Wireless Neurochemical System
Abstract
Although neurotransmitters are key substances closely related to evaluating degenerative brain diseases as well as regulating essential functions in the body, many research efforts have not been focused on direct observation of such biochemical messengers, rather on monitoring relatively associated physical, mechanical, and electrophysiological parameters. Here, a bioresorbable silicon-based neurochemical analyzer incorporated with 2D transition metal dichalcogenides is introduced as a completely implantable brain-integrated system that can wirelessly monitor time-dynamic behaviors of dopamine and relevant parameters in a simultaneous mode. An extensive range of examinations of molybdenum/tungsten disulfide (MoS2 /WS2 ) nanosheets and catalytic iron nanoparticles (Fe NPs) highlights the underlying mechanisms of strong chemical and target-specific responses to the neurotransmitters, along with theoretical modeling tools. Systematic characterizations demonstrate reversible, stable, and long-term operational performances of the degradable bioelectronics with excellent sensitivity and selectivity over those of non-dissolvable counterparts. A complete set of in vivo experiments with comparative analysis using carbon-fiber electrodes illustrates the capability for potential use as a clinically accessible tool to associated neurodegenerative diseases.
Keywords: 2D materials; bioresorbable materials; neurochemical systems; silicon nanomembranes.
© 2022 Wiley-VCH GmbH.
References
-
- N. V. Thakor, S. Tong, Annu. Rev. Biomed. Eng. 2004, 6, 453.
-
- A. L. Goldberger, Z. D. Goldberger, A. Shvilkin, Goldberger's Clinical Electrocardiography, Elsevier, Philadelphia, PA, USA 2018.
-
- M. Grady, M. Pineau, M. K. Pynes, L. B. Katz, B. Ginsberg, J. Diabetes Sci. Technol. 2014, 8, 691.
-
- D. E. DeWitt, I. B. Hirsch, J. Am. Med. Assoc. 2003, 289, 2254.
-
- A. R. Dykstra, A. M. Chan, B. T. Quinn, R. Zepeda, C. J. Keller, J. Cormier, J. R. Madsen, E. N. Eskandar, S. S. Cash, Neuroimage 2012, 59, 3563.
MeSH terms
Substances
Grants and funding
- Korea University grant
- KU-KIST Graduate School of Converging Science and Technology Program
- NRF-2017R1E1A1A01075027/Korea Government (Ministry of Science and ICT, MSIT)
- NRF-2021R1A2B5B02002437/Korea Government (Ministry of Science and ICT, MSIT)
- NRF-2020R1A2C2009389/Korea Government (Ministry of Science and ICT, MSIT)
- NRF-2020M3D1A1110548/Korea Government (Ministry of Science and ICT, MSIT)
- Korea Medical Device Development Fund Grant funded by the Korea Government
- Ministry of Trade, Industry & Energy
- Ministry of Health & Welfare
- 1711138262/Ministry of Food and Drug Safety
- KMDF_PR_20200901_0138-02/Ministry of Food and Drug Safety
- IITP-2022-2020-0-01819/Ministry of Science and ICT
- Institute for Computational and Data Sciences Advanced CyberInfrastructure (ICDS-ACI)
- 59021-DNI7/American Chemical Society Petroleum Research Fund
- ECCS-1933072/National Science Foundation
LinkOut - more resources
Full Text Sources
