Data-Driven Dose-Volume Histogram Prediction
- PMID: 35079664
- PMCID: PMC8777147
- DOI: 10.1016/j.adro.2021.100841
Data-Driven Dose-Volume Histogram Prediction
Abstract
Purpose: To evaluate dose-volume histogram (DVH) prediction from prior radiation therapy data.
Methods and materials: An Oncospace radiation therapy database was constructed including images, structures, and dose distributions for patients with advanced lung cancer. DVH data was queried for total lungs, esophagus, heart, and external body contours. Each query returned DVH data for the N-most similar organs at risk (OARs) based on OAR-to-planning-target-volume (PTV) geometry via the overlap volume histogram (OVH). The DVHs for 5, 20, and 50 of the most similar OVHs were returned for each OAR for each patient. The OVH(0cm) is the relative volume of the OAR overlapping with the PTV, and the OVH(2cm) is the relative volume of the OAR 2 cm away from the PTV. The OVH(cm) and DVH(%) queried from the database were separated into interquartile ranges (IQRs), nonoutlier ranges (NORs) (equal to 3 × IQR), and the average database DVH (DVH-DB) computed from the NOR data. The ability to predict the clinically delivered DVH was evaluated based on percentiles and differences between the DVH-DB and the clinical DVH (DVH-CL) for a varying number of returned patient DVHs for a subset of patients.
Results: The ability to predict the clinically delivered DVH was excellent in the lungs and body; the IQR and NOR were <4% and <16%, respectively, in the lungs and <1% and <5%, respectively, in the body at all distances less than 2 cm from the PTV. For 21/23 patients considered, the differences in lung DVH-DB and DVH-CL were <4.6% and in 14/23 cases, <3%. In esophagus and heart, the ability to predict DVH-CL was weaker, with mean DVH differences >10% for 12/23 esophagi and 10/23 hearts. In esophagus and heart queries, the NOR was often 10% to 100% volume in dose ranges between 0% and 50% of prescription, independent of the number of patients queried.
Conclusions: Using prior data to predict clinical dosimetry is increasingly of interest, but model- and data-driven methods have limitations if based on limited data sets. This study's results showed that prediction may be reasonable in organs containing tumors with known overlap, but for nonoverlapped OARs, planning preference and plan design may dominate the clinical dose.
© 2021 The Authors.
Figures
References
-
- Nelms BE, Robinson G, Markham J, et al. Variation in external beam treatment plan quality: An inter-institutional study of planners and planning systems. Pract Radiat Oncol. 2012;2:296–305. - PubMed
-
- Chung HT, Lee B, Park E, Lu JJ, Xia P. Can all centers plan intensity-modulated radiotherapy (IMRT) effectively? An external audit of dosimetric comparisons between three-dimensional conformal radiotherapy and IMRT for adjuvant chemoradiation for gastric cancer. Int J Radiat Oncol Biol Phys. 2008;71:1167–1174. - PubMed
-
- Appenzoller LM, Michalski JM, Thorstad WL, Mutic S., Moore KL. Predicting dose-volume histograms for organs-at-risk in IMRT planning. Med Phys. 2012;39:7446–7461. - PubMed
-
- Ahmed S, Nelms B, Gintz D, et al. A method for a priori estimation of best feasible DVH for organs-at-risk: Validation for head and neck VMAT planning. Med Phys. 2017;44:5486–5497. - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous
