Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Feb 17;19(2).
doi: 10.1088/1478-3975/ac4ef0.

Cytoskeletal proteins: lessons learned from bacteria

Affiliations
Review

Cytoskeletal proteins: lessons learned from bacteria

Félix Ramos-León et al. Phys Biol. .

Abstract

Cytoskeletal proteins are classified as a group that is defined functionally, whose members are capable of polymerizing into higher order structures, either dynamically or statically, to perform structural roles during a variety of cellular processes. In eukaryotes, the most well-studied cytoskeletal proteins are actin, tubulin, and intermediate filaments, and are essential for cell shape and movement, chromosome segregation, and intracellular cargo transport. Prokaryotes often harbor homologs of these proteins, but in bacterial cells, these homologs are usually not employed in roles that can be strictly defined as 'cytoskeletal'. However, several bacteria encode other proteins capable of polymerizing which, although they do not appear to have a eukaryotic counterpart, nonetheless appear to perform a more traditional 'cytoskeletal' function. In this review, we discuss recent reports that cover the structures and functions of prokaryotic proteins that are broadly termed as cytoskeletal, either by sequence homology or by function, to highlight how the enzymatic properties of traditionally studied cytoskeletal proteins may be used for other types of cellular functions; and to demonstrate how truly 'cytoskeletal' functions may be performed by uniquely bacterial proteins that do not display homology to eukaryotic proteins.

Keywords: Bacillus subtilis; Caulobacter; E. coli; actin; ftsZ; mreB; tubulin.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources