Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 16;144(6):2399-2414.
doi: 10.1021/jacs.1c10783. Epub 2022 Jan 27.

A Perspective on Late-Stage Aromatic C-H Bond Functionalization

Affiliations

A Perspective on Late-Stage Aromatic C-H Bond Functionalization

Li Zhang et al. J Am Chem Soc. .

Abstract

Late-stage functionalization of C-H bonds (C-H LSF) can provide a straightforward approach to the efficient synthesis of functionalized complex molecules. However, C-H LSF is challenging because the C-H bond must be functionalized in the presence of various other functional groups. In this Perspective, we evaluate aromatic C-H LSF on the basis of four criteria─reactivity, chemoselectivity, site-selectivity, and substrate scope─and provide our own views on current challenges as well as promising strategies and areas of growth going forward.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Electrophilic Aromatic Nitration
Scheme 2
Scheme 2. Late-Stage Electrophilic Aromatic Bromination with a Sulfide Catalyst
Scheme 3
Scheme 3. Late-Stage Electrophilic Aromatic Fluorination via a [PdIV]–F Species
Scheme 4
Scheme 4. Late-Stage Electrophilic Aromatic Oxygenation with Bis(methanesulfonyl) Peroxide
Scheme 5
Scheme 5. Late-Stage Aromatic C–H Bond Functionalization via Aryl Thianthrenium Salts
Scheme 6
Scheme 6. Enzyme-Catalyzed Late-Stage Functionalization of a C–H Bond
Scheme 7
Scheme 7. Vicarious Nucleophilic Substitution
Scheme 8
Scheme 8. Late-Stage Aromatic C–H Bond Functionalization via Pyridyl Phosphonium Salts
Scheme 9
Scheme 9. Functionalization of Indole Derivatives via Electrophilic Metalation
Scheme 10
Scheme 10. Palladium-Catalyzed Non-directed C–H Bond Functionalization Enabled by Ligand
Scheme 11
Scheme 11. Palladium-Catalyzed ortho C–H Bond Hydroxylation of Aryl Carboxylic Acids
Scheme 12
Scheme 12. Palladium-Catalyzed Remote C–H Bond Functionalization of Quinoline via Template
Scheme 13
Scheme 13. Ruthenium-Catalyzed Late-Stage Alkylation of C–H Bonds
Scheme 14
Scheme 14. Iridium-Catalyzed Late-Stage Borylation of C–H Bonds
Scheme 15
Scheme 15. Iron-Catalyzed Late-Stage HIE Reaction
Scheme 16
Scheme 16. Late-Stage Oxygenation of Arenes with Phthaloyl Peroxide
Scheme 17
Scheme 17. Late-Stage TEDAylation of Arenes
Scheme 18
Scheme 18. Late-Stage Electrochemical Trifluoromethylation of Hetarene with Zinc Sulfinate Reagents
Scheme 19
Scheme 19. Late-Stage Amination of Tyrosine via Photoredox Catalysis
Scheme 20
Scheme 20. Late-Stage Borylation of Arenes with Amine–Borane
Scheme 21
Scheme 21. Late-Stage Radio-fluorination Reaction of Aromatic C–H Bonds via Photoredox Catalysis
Scheme 22
Scheme 22. Late-Stage Hydroxylation of Aromatic C–H Bonds via Electrophotoredox Catalysis

References

    1. For reviews and perspectives on late-stage functionalization, see:

    2. Wencel-Delord J.; Glorius F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 2013, 5, 369–375. 10.1038/nchem.1607. - DOI - PubMed
    3. Cernak T.; Dykstra K. D.; Tyagarajan S.; Vachal P.; Krska S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 2016, 45, 546–576. 10.1039/C5CS00628G. - DOI - PubMed
    4. Börgel J.; Ritter T. Late-stage functionalization. Chem 2020, 6, 1877–1887. 10.1016/j.chempr.2020.07.007. - DOI
    5. Guillemard L.; Kaplaneris N.; Ackermann L.; Johansson M. J. Late-stage C–H functionalization offers new opportunities in drug discovery. Nat. Rev. Chem. 2021, 5, 522–545. 10.1038/s41570-021-00300-6. - DOI - PubMed
    1. For reviews and books on drug structure–activity relationship studies, see:

    2. Trager W. F.Principles of Drug Metabolism 1: Redox Reactions. In Comprehensive Medicinal Chemistry II; Taylor J. B., Triggle D. J., Eds.; Elsevier: Oxford, 2007; pp 87–132.
    3. Beale J. M.; Block J. H.. Wilson and Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry, 12th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, 2011.
    4. Genovino J.; Sames D.; Hamann L. G.; Touré B. B. Accessing Drug Metabolites via Transition-Metal Catalyzed C–H Oxidation: The Liver as Synthetic Inspiration. Angew. Chem., Int. Ed. 2016, 55, 14218–14238. 10.1002/anie.201602644. - DOI - PubMed
    1. For reviews on the effect of the fluorine substituent in drugs, see:

    2. Müller K.; Faeh C.; Diederich F. Fluorine in pharmaceuticals: looking beyond intuition. Science 2007, 317, 1881–1886. 10.1126/science.1131943. - DOI - PubMed
    3. Wang J.; Sánchez-Roselló M.; Aceña J. L.; Del Pozo C.; Sorochinsky A. E.; Fustero S.; Soloshonok V. A.; Liu H. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem. Rev. 2014, 114, 2432–2506. 10.1021/cr4002879. - DOI - PubMed
    1. For reviews on PET study, see:

    2. Ametamey S. M.; Honer M.; Schubiger P. A. Molecular imaging with PET. Chem. Rev. 2008, 108, 1501–1516. 10.1021/cr0782426. - DOI - PubMed
    3. Matthews P. M.; Rabiner E. A.; Passchier J.; Gunn R. N. Positron emission tomography molecular imaging for drug development. Br. J. Clin. Pharmacol. 2012, 73, 175–186. 10.1111/j.1365-2125.2011.04085.x. - DOI - PMC - PubMed
    1. For reviews on the application of tritiated drugs, see:

    2. Voges R.; Heys J. R.; Moenius T.. Preparation of tritium-labeled compounds by chemical synthesis. Preparation of Compounds Labeled with Tritium and Carbon-14; John Wiley & Sons, 2009; pp 109–209.
    3. Isin E. M.; Elmore C. S.; Nilsson G. N.; Thompson R. A.; Weidolf L. Use of radiolabeled compounds in drug metabolism and pharmacokinetic studies. Chem. Res. Toxicol. 2012, 25, 532–542. 10.1021/tx2005212. - DOI - PubMed

Publication types