Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep;259(5):1331-1350.
doi: 10.1007/s00709-022-01740-7. Epub 2022 Jan 27.

Fluoride tolerance in rice is negatively regulated by the 'stress-phytohormone' abscisic acid (ABA), but promoted by ABA-antagonist growth regulators, melatonin, and gibberellic acid

Affiliations

Fluoride tolerance in rice is negatively regulated by the 'stress-phytohormone' abscisic acid (ABA), but promoted by ABA-antagonist growth regulators, melatonin, and gibberellic acid

Ankur Singh et al. Protoplasma. 2022 Sep.

Abstract

The present manuscript aimed at investigating whether abscisic acid (ABA) promotes fluoride tolerance, similar to inciting salt adaptation in rice. Seeds of three salt-tolerant rice genotypes were maintained at 32 °C under 16/8 h light/dark photoperiodic cycle with 700 μmol photons m-2 s-1 intensity and 50% relative humidity in a plant growth chamber for 20 days. Suppressed ABA biosynthesis, and downregulated expression of ABA-inducible genes like Rab16A, Osem, and TRAB1 triggered NaCl-induced growth inhibition and physiological injuries like chlorophyll degradation, electrolyte leakage, formation of H2O2, malondialdehyde, and methylglyoxal in Matla. Reduced ABA accumulation increased the levels of melatonin and gibberellic acid in NaF (50 mg L-1)-stressed Nonabokra and Matla, which altogether promoted fluoride tolerance. Higher ABA content in NaF-stressed Jarava stimulated fluoride uptake via chloride channels, thus exhibiting severe fluoride susceptibility, in spite of higher production of ABA-associated osmolytes like proline, glycine-betaine and polyamines via the concerted action of genes like PDH, ADC, ODC, SAMDC, SPDS, SPMS, DAO, and PAO. Increased accumulation of compatible solutes in presence of high endogenous ABA promoted salt tolerance in Jarava; the same was insufficient to ameliorate fluoride-induced injuries in this cultivar. Treatment with ABA biosynthetic inhibitor, Na2WO4 promoted fluoride tolerance in Jarava, whereas further supplementation with exogenous ABA resulted in reversion back to fluoride-susceptible phenotype. Our work clearly established that ABA cannot always be considered as a 'universal' stress hormone as known in literature, since it acts as a negative regulator of fluoride tolerance which is more tightly regulated in rice via melatonin- and gibberellic acid-dependent pathways in ABA-independent manner.

Keywords: ABA inhibitor; ABA-dependent pathway; ABA-melatonin-gibberellic acid interaction; Abscisic acid (ABA); Fluoride stress; Salt stress; Salt-tolerant rice; Varietal difference.

PubMed Disclaimer

References

    1. Adamakis I-D, Panteris E, Eleftheriou E (2012) Tungsten toxicity in plants. Plants 1:82–99 - PubMed - PMC - DOI
    1. Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A (2013) ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci 4:63 - PubMed - PMC
    1. Banerjee A, Roychoudhury A (2018) Abiotic stress, generation of reactive oxygen species, and their consequences: an overview. In: Singh VP, Singh S, Tripathi D, Mohan Prasad S, Chauhan DK (eds) Revisiting the role of reactive oxygen species (ROS) in plants: ROS Boon or bane for plants? John Wiley & Sons Inc, USA, pp 23–50
    1. Banerjee A, Roychoudhury A (2019a) Differential regulation of defence pathways in aromatic and non-aromatic indica rice cultivars towards fluoride toxicity. Plant Cell Rep 38:1217–1233 - PubMed - DOI
    1. Banerjee A, Roychoudhury A (2019b) Melatonin application reduces fluoride uptake and toxicity in rice seedlings by altering abscisic acid, gibberellin, auxin and antioxidant homeostasis. Plant Physiol Biochem 145:164–173 - PubMed - DOI

LinkOut - more resources