Magnetic resonance elastography with guided pressure waves
- PMID: 35088465
- DOI: 10.1002/nbm.4701
Magnetic resonance elastography with guided pressure waves
Abstract
Magnetic resonance elastography aims to non-invasively and remotely characterize the mechanical properties of living tissues. To quantitatively and regionally map the shear viscoelastic moduli in vivo, the technique must achieve proper mechanical excitation throughout the targeted tissues. Although it is straightforward, ante manibus, in close organs such as the liver or the breast, which practitioners clinically palpate already, it is somewhat fortunately highly challenging to trick the natural protective barriers of remote organs such as the brain. So far, mechanical waves have been induced in the latter by shaking the surrounding cranial bones. Here, the skull was circumvented by guiding pressure waves inside the subject's buccal cavity so mechanical waves could propagate from within through the brainstem up to the brain. Repeatable, reproducible and robust displacement fields were recorded in phantoms and in vivo by magnetic resonance elastography with guided pressure waves such that quantitative mechanical outcomes were extracted in the human brain.
Keywords: MRI; biomechanics; brain; excitation; magnetic resonance elastography; pressure wave.
© 2022 John Wiley & Sons, Ltd.
References
REFERENCES
-
- Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 1995;269(5232):1854-1857. http://www.sciencemag.org/content/269/5232/1854.full.pdf
-
- Manduca A, Oliphant TE, Dresner MA, et al. Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Anal. 2001;5(4):237-254.
-
- Sinkus R, Tanter M, Catheline S, et al. Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Magn Reson Med. 2005;53(2):372-387.
-
- Van Houten EEW, Miga MI, Weaver JB, Kennedy FE, Paulsen KD. Three-dimensional subzone-based reconstruction algorithm for MR elastography. Magn Reson Med. 2001;45(5):827-837.
-
- Huwart L, Peeters F, Sinkus R, et al. Liver fibrosis: non-invasive assessment with MR elastography. NMR Biomed. 2006;19(2):173-179. https://doi.org/10.1002/nbm.1030
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
