Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Jan 3;875(1):103-14.
doi: 10.1016/0005-2760(86)90016-0.

Modification of human low-density lipoprotein by the lipid peroxidation product 4-hydroxynonenal

Modification of human low-density lipoprotein by the lipid peroxidation product 4-hydroxynonenal

G Jürgens et al. Biochim Biophys Acta. .

Abstract

The effects of the lipid peroxidation product 4-hydroxynonenal on freshly prepared human low-density lipoprotein (LDL) were studied. At a fixed LDL concentration (5.7 mg/ml) the amount of 4-hydroxynonenal incorporated into the LDL increased with increasing aldehyde concentration from 28-30 (0.2 mM) to 140 (1 mM) mol per mol LDL, whereas at a fixed aldehyde concentration (0.2 mM) its incorporation into LDL decreased with increasing LDL concentration from 48 (1 mg LDL/ml) to 26 (12 mg LDL/ml) mol 4-hydroxynonenal bound per mol LDL. Of the total hydroxynonenal taken up 78% was bound to the protein and 21% to the lipid moiety; the remaining 1% was dissolved as free aldehyde in the lipid fraction. Amino acid analysis of the apolipoprotein B revealed that 4-hydroxynonenal attacks mainly the lysine and tyrosine residues and to a lesser extent also serine, histidine and cysteine. Treatment of LDL with 4-hydroxynonenal results in a concentration-dependent increase of the negative charge of the LDL particle as evidenced by its increased electrophoretic mobility. Moreover, 4-hydroxynonenal treatment leads to a partial conversion of the apolipoprotein B-100 into higher molecular weight forms most probably apolipoproteins B-126 and B-151. Compared to malonaldehyde, 4-hydroxynonenal exhibits a much higher capacity to modify LDL and it is therefore believed that this aldehyde is a more likely candidate for being responsible for LDL modification under in vivo lipid peroxidation conditions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources